瀏覽代碼

Merge branch 'bpf-verifier-sec-fixes'

Alexei Starovoitov says:

====================
This patch set addresses a set of security vulnerabilities
in bpf verifier logic discovered by Jann Horn.
All of the patches are candidates for 4.14 stable.
====================

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Daniel Borkmann 7 年之前
父節點
當前提交
3db9128fcf
共有 3 個文件被更改,包括 661 次插入67 次删除
  1. 2 2
      include/linux/bpf_verifier.h
  2. 126 49
      kernel/bpf/verifier.c
  3. 533 16
      tools/testing/selftests/bpf/test_verifier.c

+ 2 - 2
include/linux/bpf_verifier.h

@@ -15,11 +15,11 @@
  * In practice this is far bigger than any realistic pointer offset; this limit
  * In practice this is far bigger than any realistic pointer offset; this limit
  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
  */
  */
-#define BPF_MAX_VAR_OFF	(1ULL << 31)
+#define BPF_MAX_VAR_OFF	(1 << 29)
 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
  * that converting umax_value to int cannot overflow.
  * that converting umax_value to int cannot overflow.
  */
  */
-#define BPF_MAX_VAR_SIZ	INT_MAX
+#define BPF_MAX_VAR_SIZ	(1 << 29)
 
 
 /* Liveness marks, used for registers and spilled-regs (in stack slots).
 /* Liveness marks, used for registers and spilled-regs (in stack slots).
  * Read marks propagate upwards until they find a write mark; they record that
  * Read marks propagate upwards until they find a write mark; they record that

+ 126 - 49
kernel/bpf/verifier.c

@@ -1059,6 +1059,11 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
 		break;
 		break;
 	case PTR_TO_STACK:
 	case PTR_TO_STACK:
 		pointer_desc = "stack ";
 		pointer_desc = "stack ";
+		/* The stack spill tracking logic in check_stack_write()
+		 * and check_stack_read() relies on stack accesses being
+		 * aligned.
+		 */
+		strict = true;
 		break;
 		break;
 	default:
 	default:
 		break;
 		break;
@@ -1067,6 +1072,29 @@ static int check_ptr_alignment(struct bpf_verifier_env *env,
 					   strict);
 					   strict);
 }
 }
 
 
+/* truncate register to smaller size (in bytes)
+ * must be called with size < BPF_REG_SIZE
+ */
+static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
+{
+	u64 mask;
+
+	/* clear high bits in bit representation */
+	reg->var_off = tnum_cast(reg->var_off, size);
+
+	/* fix arithmetic bounds */
+	mask = ((u64)1 << (size * 8)) - 1;
+	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
+		reg->umin_value &= mask;
+		reg->umax_value &= mask;
+	} else {
+		reg->umin_value = 0;
+		reg->umax_value = mask;
+	}
+	reg->smin_value = reg->umin_value;
+	reg->smax_value = reg->umax_value;
+}
+
 /* check whether memory at (regno + off) is accessible for t = (read | write)
 /* check whether memory at (regno + off) is accessible for t = (read | write)
  * if t==write, value_regno is a register which value is stored into memory
  * if t==write, value_regno is a register which value is stored into memory
  * if t==read, value_regno is a register which will receive the value from memory
  * if t==read, value_regno is a register which will receive the value from memory
@@ -1200,9 +1228,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
 	    regs[value_regno].type == SCALAR_VALUE) {
 	    regs[value_regno].type == SCALAR_VALUE) {
 		/* b/h/w load zero-extends, mark upper bits as known 0 */
 		/* b/h/w load zero-extends, mark upper bits as known 0 */
-		regs[value_regno].var_off =
-			tnum_cast(regs[value_regno].var_off, size);
-		__update_reg_bounds(&regs[value_regno]);
+		coerce_reg_to_size(&regs[value_regno], size);
 	}
 	}
 	return err;
 	return err;
 }
 }
@@ -1282,6 +1308,7 @@ static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
 		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
 			regno, tn_buf);
 			regno, tn_buf);
+		return -EACCES;
 	}
 	}
 	off = regs[regno].off + regs[regno].var_off.value;
 	off = regs[regno].off + regs[regno].var_off.value;
 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
@@ -1772,14 +1799,6 @@ static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
 	return 0;
 	return 0;
 }
 }
 
 
-static void coerce_reg_to_32(struct bpf_reg_state *reg)
-{
-	/* clear high 32 bits */
-	reg->var_off = tnum_cast(reg->var_off, 4);
-	/* Update bounds */
-	__update_reg_bounds(reg);
-}
-
 static bool signed_add_overflows(s64 a, s64 b)
 static bool signed_add_overflows(s64 a, s64 b)
 {
 {
 	/* Do the add in u64, where overflow is well-defined */
 	/* Do the add in u64, where overflow is well-defined */
@@ -1800,6 +1819,41 @@ static bool signed_sub_overflows(s64 a, s64 b)
 	return res > a;
 	return res > a;
 }
 }
 
 
+static bool check_reg_sane_offset(struct bpf_verifier_env *env,
+				  const struct bpf_reg_state *reg,
+				  enum bpf_reg_type type)
+{
+	bool known = tnum_is_const(reg->var_off);
+	s64 val = reg->var_off.value;
+	s64 smin = reg->smin_value;
+
+	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
+		verbose(env, "math between %s pointer and %lld is not allowed\n",
+			reg_type_str[type], val);
+		return false;
+	}
+
+	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
+		verbose(env, "%s pointer offset %d is not allowed\n",
+			reg_type_str[type], reg->off);
+		return false;
+	}
+
+	if (smin == S64_MIN) {
+		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
+			reg_type_str[type]);
+		return false;
+	}
+
+	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
+		verbose(env, "value %lld makes %s pointer be out of bounds\n",
+			smin, reg_type_str[type]);
+		return false;
+	}
+
+	return true;
+}
+
 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
  * Caller should also handle BPF_MOV case separately.
  * Caller should also handle BPF_MOV case separately.
  * If we return -EACCES, caller may want to try again treating pointer as a
  * If we return -EACCES, caller may want to try again treating pointer as a
@@ -1868,6 +1922,10 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
 	dst_reg->type = ptr_reg->type;
 	dst_reg->type = ptr_reg->type;
 	dst_reg->id = ptr_reg->id;
 	dst_reg->id = ptr_reg->id;
 
 
+	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
+	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
+		return -EINVAL;
+
 	switch (opcode) {
 	switch (opcode) {
 	case BPF_ADD:
 	case BPF_ADD:
 		/* We can take a fixed offset as long as it doesn't overflow
 		/* We can take a fixed offset as long as it doesn't overflow
@@ -1998,12 +2056,19 @@ static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
 		return -EACCES;
 		return -EACCES;
 	}
 	}
 
 
+	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
+		return -EINVAL;
+
 	__update_reg_bounds(dst_reg);
 	__update_reg_bounds(dst_reg);
 	__reg_deduce_bounds(dst_reg);
 	__reg_deduce_bounds(dst_reg);
 	__reg_bound_offset(dst_reg);
 	__reg_bound_offset(dst_reg);
 	return 0;
 	return 0;
 }
 }
 
 
+/* WARNING: This function does calculations on 64-bit values, but the actual
+ * execution may occur on 32-bit values. Therefore, things like bitshifts
+ * need extra checks in the 32-bit case.
+ */
 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 				      struct bpf_insn *insn,
 				      struct bpf_insn *insn,
 				      struct bpf_reg_state *dst_reg,
 				      struct bpf_reg_state *dst_reg,
@@ -2014,12 +2079,8 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 	bool src_known, dst_known;
 	bool src_known, dst_known;
 	s64 smin_val, smax_val;
 	s64 smin_val, smax_val;
 	u64 umin_val, umax_val;
 	u64 umin_val, umax_val;
+	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
 
 
-	if (BPF_CLASS(insn->code) != BPF_ALU64) {
-		/* 32-bit ALU ops are (32,32)->64 */
-		coerce_reg_to_32(dst_reg);
-		coerce_reg_to_32(&src_reg);
-	}
 	smin_val = src_reg.smin_value;
 	smin_val = src_reg.smin_value;
 	smax_val = src_reg.smax_value;
 	smax_val = src_reg.smax_value;
 	umin_val = src_reg.umin_value;
 	umin_val = src_reg.umin_value;
@@ -2027,6 +2088,12 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 	src_known = tnum_is_const(src_reg.var_off);
 	src_known = tnum_is_const(src_reg.var_off);
 	dst_known = tnum_is_const(dst_reg->var_off);
 	dst_known = tnum_is_const(dst_reg->var_off);
 
 
+	if (!src_known &&
+	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
+		__mark_reg_unknown(dst_reg);
+		return 0;
+	}
+
 	switch (opcode) {
 	switch (opcode) {
 	case BPF_ADD:
 	case BPF_ADD:
 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
@@ -2155,9 +2222,9 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 		__update_reg_bounds(dst_reg);
 		__update_reg_bounds(dst_reg);
 		break;
 		break;
 	case BPF_LSH:
 	case BPF_LSH:
-		if (umax_val > 63) {
-			/* Shifts greater than 63 are undefined.  This includes
-			 * shifts by a negative number.
+		if (umax_val >= insn_bitness) {
+			/* Shifts greater than 31 or 63 are undefined.
+			 * This includes shifts by a negative number.
 			 */
 			 */
 			mark_reg_unknown(env, regs, insn->dst_reg);
 			mark_reg_unknown(env, regs, insn->dst_reg);
 			break;
 			break;
@@ -2183,27 +2250,29 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 		__update_reg_bounds(dst_reg);
 		__update_reg_bounds(dst_reg);
 		break;
 		break;
 	case BPF_RSH:
 	case BPF_RSH:
-		if (umax_val > 63) {
-			/* Shifts greater than 63 are undefined.  This includes
-			 * shifts by a negative number.
+		if (umax_val >= insn_bitness) {
+			/* Shifts greater than 31 or 63 are undefined.
+			 * This includes shifts by a negative number.
 			 */
 			 */
 			mark_reg_unknown(env, regs, insn->dst_reg);
 			mark_reg_unknown(env, regs, insn->dst_reg);
 			break;
 			break;
 		}
 		}
-		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
-		if (dst_reg->smin_value < 0) {
-			if (umin_val) {
-				/* Sign bit will be cleared */
-				dst_reg->smin_value = 0;
-			} else {
-				/* Lost sign bit information */
-				dst_reg->smin_value = S64_MIN;
-				dst_reg->smax_value = S64_MAX;
-			}
-		} else {
-			dst_reg->smin_value =
-				(u64)(dst_reg->smin_value) >> umax_val;
-		}
+		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
+		 * be negative, then either:
+		 * 1) src_reg might be zero, so the sign bit of the result is
+		 *    unknown, so we lose our signed bounds
+		 * 2) it's known negative, thus the unsigned bounds capture the
+		 *    signed bounds
+		 * 3) the signed bounds cross zero, so they tell us nothing
+		 *    about the result
+		 * If the value in dst_reg is known nonnegative, then again the
+		 * unsigned bounts capture the signed bounds.
+		 * Thus, in all cases it suffices to blow away our signed bounds
+		 * and rely on inferring new ones from the unsigned bounds and
+		 * var_off of the result.
+		 */
+		dst_reg->smin_value = S64_MIN;
+		dst_reg->smax_value = S64_MAX;
 		if (src_known)
 		if (src_known)
 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
 			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
 						       umin_val);
 						       umin_val);
@@ -2219,6 +2288,12 @@ static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
 		break;
 		break;
 	}
 	}
 
 
+	if (BPF_CLASS(insn->code) != BPF_ALU64) {
+		/* 32-bit ALU ops are (32,32)->32 */
+		coerce_reg_to_size(dst_reg, 4);
+		coerce_reg_to_size(&src_reg, 4);
+	}
+
 	__reg_deduce_bounds(dst_reg);
 	__reg_deduce_bounds(dst_reg);
 	__reg_bound_offset(dst_reg);
 	__reg_bound_offset(dst_reg);
 	return 0;
 	return 0;
@@ -2396,17 +2471,20 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
 					return -EACCES;
 					return -EACCES;
 				}
 				}
 				mark_reg_unknown(env, regs, insn->dst_reg);
 				mark_reg_unknown(env, regs, insn->dst_reg);
-				/* high 32 bits are known zero. */
-				regs[insn->dst_reg].var_off = tnum_cast(
-						regs[insn->dst_reg].var_off, 4);
-				__update_reg_bounds(&regs[insn->dst_reg]);
+				coerce_reg_to_size(&regs[insn->dst_reg], 4);
 			}
 			}
 		} else {
 		} else {
 			/* case: R = imm
 			/* case: R = imm
 			 * remember the value we stored into this reg
 			 * remember the value we stored into this reg
 			 */
 			 */
 			regs[insn->dst_reg].type = SCALAR_VALUE;
 			regs[insn->dst_reg].type = SCALAR_VALUE;
-			__mark_reg_known(regs + insn->dst_reg, insn->imm);
+			if (BPF_CLASS(insn->code) == BPF_ALU64) {
+				__mark_reg_known(regs + insn->dst_reg,
+						 insn->imm);
+			} else {
+				__mark_reg_known(regs + insn->dst_reg,
+						 (u32)insn->imm);
+			}
 		}
 		}
 
 
 	} else if (opcode > BPF_END) {
 	} else if (opcode > BPF_END) {
@@ -3437,15 +3515,14 @@ static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
 			return range_within(rold, rcur) &&
 			return range_within(rold, rcur) &&
 			       tnum_in(rold->var_off, rcur->var_off);
 			       tnum_in(rold->var_off, rcur->var_off);
 		} else {
 		} else {
-			/* if we knew anything about the old value, we're not
-			 * equal, because we can't know anything about the
-			 * scalar value of the pointer in the new value.
+			/* We're trying to use a pointer in place of a scalar.
+			 * Even if the scalar was unbounded, this could lead to
+			 * pointer leaks because scalars are allowed to leak
+			 * while pointers are not. We could make this safe in
+			 * special cases if root is calling us, but it's
+			 * probably not worth the hassle.
 			 */
 			 */
-			return rold->umin_value == 0 &&
-			       rold->umax_value == U64_MAX &&
-			       rold->smin_value == S64_MIN &&
-			       rold->smax_value == S64_MAX &&
-			       tnum_is_unknown(rold->var_off);
+			return false;
 		}
 		}
 	case PTR_TO_MAP_VALUE:
 	case PTR_TO_MAP_VALUE:
 		/* If the new min/max/var_off satisfy the old ones and
 		/* If the new min/max/var_off satisfy the old ones and

+ 533 - 16
tools/testing/selftests/bpf/test_verifier.c

@@ -606,7 +606,6 @@ static struct bpf_test tests[] = {
 		},
 		},
 		.errstr = "misaligned stack access",
 		.errstr = "misaligned stack access",
 		.result = REJECT,
 		.result = REJECT,
-		.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
 	},
 	},
 	{
 	{
 		"invalid map_fd for function call",
 		"invalid map_fd for function call",
@@ -1797,7 +1796,6 @@ static struct bpf_test tests[] = {
 		},
 		},
 		.result = REJECT,
 		.result = REJECT,
 		.errstr = "misaligned stack access off (0x0; 0x0)+-8+2 size 8",
 		.errstr = "misaligned stack access off (0x0; 0x0)+-8+2 size 8",
-		.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
 	},
 	},
 	{
 	{
 		"PTR_TO_STACK store/load - bad alignment on reg",
 		"PTR_TO_STACK store/load - bad alignment on reg",
@@ -1810,7 +1808,6 @@ static struct bpf_test tests[] = {
 		},
 		},
 		.result = REJECT,
 		.result = REJECT,
 		.errstr = "misaligned stack access off (0x0; 0x0)+-10+8 size 8",
 		.errstr = "misaligned stack access off (0x0; 0x0)+-10+8 size 8",
-		.flags = F_LOAD_WITH_STRICT_ALIGNMENT,
 	},
 	},
 	{
 	{
 		"PTR_TO_STACK store/load - out of bounds low",
 		"PTR_TO_STACK store/load - out of bounds low",
@@ -6324,7 +6321,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6348,7 +6345,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6374,7 +6371,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R8 invalid mem access 'inv'",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6399,7 +6396,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R8 invalid mem access 'inv'",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6447,7 +6444,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6518,7 +6515,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6569,7 +6566,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6596,7 +6593,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6622,7 +6619,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6651,7 +6648,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6681,7 +6678,7 @@ static struct bpf_test tests[] = {
 			BPF_JMP_IMM(BPF_JA, 0, 0, -7),
 			BPF_JMP_IMM(BPF_JA, 0, 0, -7),
 		},
 		},
 		.fixup_map1 = { 4 },
 		.fixup_map1 = { 4 },
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
 	{
 	{
@@ -6709,8 +6706,7 @@ static struct bpf_test tests[] = {
 			BPF_EXIT_INSN(),
 			BPF_EXIT_INSN(),
 		},
 		},
 		.fixup_map1 = { 3 },
 		.fixup_map1 = { 3 },
-		.errstr_unpriv = "R0 pointer comparison prohibited",
-		.errstr = "R0 min value is negative",
+		.errstr = "unbounded min value",
 		.result = REJECT,
 		.result = REJECT,
 		.result_unpriv = REJECT,
 		.result_unpriv = REJECT,
 	},
 	},
@@ -6765,6 +6761,462 @@ static struct bpf_test tests[] = {
 		.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
 		.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
 		.result = REJECT,
 		.result = REJECT,
 	},
 	},
+	{
+		"bounds check based on zero-extended MOV",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
+			/* r2 = 0x0000'0000'ffff'ffff */
+			BPF_MOV32_IMM(BPF_REG_2, 0xffffffff),
+			/* r2 = 0 */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32),
+			/* no-op */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
+			/* access at offset 0 */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.result = ACCEPT
+	},
+	{
+		"bounds check based on sign-extended MOV. test1",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
+			/* r2 = 0xffff'ffff'ffff'ffff */
+			BPF_MOV64_IMM(BPF_REG_2, 0xffffffff),
+			/* r2 = 0xffff'ffff */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 32),
+			/* r0 = <oob pointer> */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
+			/* access to OOB pointer */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "map_value pointer and 4294967295",
+		.result = REJECT
+	},
+	{
+		"bounds check based on sign-extended MOV. test2",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
+			/* r2 = 0xffff'ffff'ffff'ffff */
+			BPF_MOV64_IMM(BPF_REG_2, 0xffffffff),
+			/* r2 = 0xfff'ffff */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 36),
+			/* r0 = <oob pointer> */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
+			/* access to OOB pointer */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "R0 min value is outside of the array range",
+		.result = REJECT
+	},
+	{
+		"bounds check based on reg_off + var_off + insn_off. test1",
+		.insns = {
+			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
+				    offsetof(struct __sk_buff, mark)),
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
+			BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 29) - 1),
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1),
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3),
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 4 },
+		.errstr = "value_size=8 off=1073741825",
+		.result = REJECT,
+		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
+	},
+	{
+		"bounds check based on reg_off + var_off + insn_off. test2",
+		.insns = {
+			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
+				    offsetof(struct __sk_buff, mark)),
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
+			BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 1),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, (1 << 30) - 1),
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_6),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, (1 << 29) - 1),
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 3),
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 4 },
+		.errstr = "value 1073741823",
+		.result = REJECT,
+		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
+	},
+	{
+		"bounds check after truncation of non-boundary-crossing range",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
+			/* r1 = [0x00, 0xff] */
+			BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
+			BPF_MOV64_IMM(BPF_REG_2, 1),
+			/* r2 = 0x10'0000'0000 */
+			BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 36),
+			/* r1 = [0x10'0000'0000, 0x10'0000'00ff] */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
+			/* r1 = [0x10'7fff'ffff, 0x10'8000'00fe] */
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
+			/* r1 = [0x00, 0xff] */
+			BPF_ALU32_IMM(BPF_SUB, BPF_REG_1, 0x7fffffff),
+			/* r1 = 0 */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
+			/* no-op */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
+			/* access at offset 0 */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.result = ACCEPT
+	},
+	{
+		"bounds check after truncation of boundary-crossing range (1)",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
+			/* r1 = [0x00, 0xff] */
+			BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = [0xffff'ff80, 0x1'0000'007f] */
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = [0xffff'ff80, 0xffff'ffff] or
+			 *      [0x0000'0000, 0x0000'007f]
+			 */
+			BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 0),
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = [0x00, 0xff] or
+			 *      [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff]
+			 */
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = 0 or
+			 *      [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff]
+			 */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
+			/* no-op or OOB pointer computation */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
+			/* potentially OOB access */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		/* not actually fully unbounded, but the bound is very high */
+		.errstr = "R0 unbounded memory access",
+		.result = REJECT
+	},
+	{
+		"bounds check after truncation of boundary-crossing range (2)",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
+			/* r1 = [0x00, 0xff] */
+			BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = [0xffff'ff80, 0x1'0000'007f] */
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = [0xffff'ff80, 0xffff'ffff] or
+			 *      [0x0000'0000, 0x0000'007f]
+			 * difference to previous test: truncation via MOV32
+			 * instead of ALU32.
+			 */
+			BPF_MOV32_REG(BPF_REG_1, BPF_REG_1),
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = [0x00, 0xff] or
+			 *      [0xffff'ffff'0000'0080, 0xffff'ffff'ffff'ffff]
+			 */
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 0xffffff80 >> 1),
+			/* r1 = 0 or
+			 *      [0x00ff'ffff'ff00'0000, 0x00ff'ffff'ffff'ffff]
+			 */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
+			/* no-op or OOB pointer computation */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
+			/* potentially OOB access */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		/* not actually fully unbounded, but the bound is very high */
+		.errstr = "R0 unbounded memory access",
+		.result = REJECT
+	},
+	{
+		"bounds check after wrapping 32-bit addition",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
+			/* r1 = 0x7fff'ffff */
+			BPF_MOV64_IMM(BPF_REG_1, 0x7fffffff),
+			/* r1 = 0xffff'fffe */
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
+			/* r1 = 0 */
+			BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 2),
+			/* no-op */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
+			/* access at offset 0 */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.result = ACCEPT
+	},
+	{
+		"bounds check after shift with oversized count operand",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
+			BPF_MOV64_IMM(BPF_REG_2, 32),
+			BPF_MOV64_IMM(BPF_REG_1, 1),
+			/* r1 = (u32)1 << (u32)32 = ? */
+			BPF_ALU32_REG(BPF_LSH, BPF_REG_1, BPF_REG_2),
+			/* r1 = [0x0000, 0xffff] */
+			BPF_ALU64_IMM(BPF_AND, BPF_REG_1, 0xffff),
+			/* computes unknown pointer, potentially OOB */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
+			/* potentially OOB access */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "R0 max value is outside of the array range",
+		.result = REJECT
+	},
+	{
+		"bounds check after right shift of maybe-negative number",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
+			/* r1 = [0x00, 0xff] */
+			BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
+			/* r1 = [-0x01, 0xfe] */
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 1),
+			/* r1 = 0 or 0xff'ffff'ffff'ffff */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
+			/* r1 = 0 or 0xffff'ffff'ffff */
+			BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 8),
+			/* computes unknown pointer, potentially OOB */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
+			/* potentially OOB access */
+			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
+			/* exit */
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "R0 unbounded memory access",
+		.result = REJECT
+	},
+	{
+		"bounds check map access with off+size signed 32bit overflow. test1",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
+			BPF_EXIT_INSN(),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x7ffffffe),
+			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
+			BPF_JMP_A(0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "map_value pointer and 2147483646",
+		.result = REJECT
+	},
+	{
+		"bounds check map access with off+size signed 32bit overflow. test2",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
+			BPF_EXIT_INSN(),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0x1fffffff),
+			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
+			BPF_JMP_A(0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "pointer offset 1073741822",
+		.result = REJECT
+	},
+	{
+		"bounds check map access with off+size signed 32bit overflow. test3",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
+			BPF_EXIT_INSN(),
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff),
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_0, 0x1fffffff),
+			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2),
+			BPF_JMP_A(0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "pointer offset -1073741822",
+		.result = REJECT
+	},
+	{
+		"bounds check map access with off+size signed 32bit overflow. test4",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
+			BPF_EXIT_INSN(),
+			BPF_MOV64_IMM(BPF_REG_1, 1000000),
+			BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 1000000),
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
+			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 2),
+			BPF_JMP_A(0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.errstr = "map_value pointer and 1000000000000",
+		.result = REJECT
+	},
+	{
+		"pointer/scalar confusion in state equality check (way 1)",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
+			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
+			BPF_JMP_A(1),
+			BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
+			BPF_JMP_A(0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.result = ACCEPT,
+		.result_unpriv = REJECT,
+		.errstr_unpriv = "R0 leaks addr as return value"
+	},
+	{
+		"pointer/scalar confusion in state equality check (way 2)",
+		.insns = {
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 2),
+			BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
+			BPF_JMP_A(1),
+			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 3 },
+		.result = ACCEPT,
+		.result_unpriv = REJECT,
+		.errstr_unpriv = "R0 leaks addr as return value"
+	},
 	{
 	{
 		"variable-offset ctx access",
 		"variable-offset ctx access",
 		.insns = {
 		.insns = {
@@ -6806,6 +7258,71 @@ static struct bpf_test tests[] = {
 		.result = REJECT,
 		.result = REJECT,
 		.prog_type = BPF_PROG_TYPE_LWT_IN,
 		.prog_type = BPF_PROG_TYPE_LWT_IN,
 	},
 	},
+	{
+		"indirect variable-offset stack access",
+		.insns = {
+			/* Fill the top 8 bytes of the stack */
+			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
+			/* Get an unknown value */
+			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, 0),
+			/* Make it small and 4-byte aligned */
+			BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 4),
+			BPF_ALU64_IMM(BPF_SUB, BPF_REG_2, 8),
+			/* add it to fp.  We now have either fp-4 or fp-8, but
+			 * we don't know which
+			 */
+			BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_10),
+			/* dereference it indirectly */
+			BPF_LD_MAP_FD(BPF_REG_1, 0),
+			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
+				     BPF_FUNC_map_lookup_elem),
+			BPF_MOV64_IMM(BPF_REG_0, 0),
+			BPF_EXIT_INSN(),
+		},
+		.fixup_map1 = { 5 },
+		.errstr = "variable stack read R2",
+		.result = REJECT,
+		.prog_type = BPF_PROG_TYPE_LWT_IN,
+	},
+	{
+		"direct stack access with 32-bit wraparound. test1",
+		.insns = {
+			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x7fffffff),
+			BPF_MOV32_IMM(BPF_REG_0, 0),
+			BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
+			BPF_EXIT_INSN()
+		},
+		.errstr = "fp pointer and 2147483647",
+		.result = REJECT
+	},
+	{
+		"direct stack access with 32-bit wraparound. test2",
+		.insns = {
+			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x3fffffff),
+			BPF_MOV32_IMM(BPF_REG_0, 0),
+			BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
+			BPF_EXIT_INSN()
+		},
+		.errstr = "fp pointer and 1073741823",
+		.result = REJECT
+	},
+	{
+		"direct stack access with 32-bit wraparound. test3",
+		.insns = {
+			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff),
+			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 0x1fffffff),
+			BPF_MOV32_IMM(BPF_REG_0, 0),
+			BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
+			BPF_EXIT_INSN()
+		},
+		.errstr = "fp pointer offset 1073741822",
+		.result = REJECT
+	},
 	{
 	{
 		"liveness pruning and write screening",
 		"liveness pruning and write screening",
 		.insns = {
 		.insns = {