|
@@ -1,537 +0,0 @@
|
|
|
-/*
|
|
|
- * linux/fs/ext4/crypto.c
|
|
|
- *
|
|
|
- * Copyright (C) 2015, Google, Inc.
|
|
|
- *
|
|
|
- * This contains encryption functions for ext4
|
|
|
- *
|
|
|
- * Written by Michael Halcrow, 2014.
|
|
|
- *
|
|
|
- * Filename encryption additions
|
|
|
- * Uday Savagaonkar, 2014
|
|
|
- * Encryption policy handling additions
|
|
|
- * Ildar Muslukhov, 2014
|
|
|
- *
|
|
|
- * This has not yet undergone a rigorous security audit.
|
|
|
- *
|
|
|
- * The usage of AES-XTS should conform to recommendations in NIST
|
|
|
- * Special Publication 800-38E and IEEE P1619/D16.
|
|
|
- */
|
|
|
-
|
|
|
-#include <crypto/skcipher.h>
|
|
|
-#include <keys/user-type.h>
|
|
|
-#include <keys/encrypted-type.h>
|
|
|
-#include <linux/ecryptfs.h>
|
|
|
-#include <linux/gfp.h>
|
|
|
-#include <linux/kernel.h>
|
|
|
-#include <linux/key.h>
|
|
|
-#include <linux/list.h>
|
|
|
-#include <linux/mempool.h>
|
|
|
-#include <linux/module.h>
|
|
|
-#include <linux/mutex.h>
|
|
|
-#include <linux/random.h>
|
|
|
-#include <linux/scatterlist.h>
|
|
|
-#include <linux/spinlock_types.h>
|
|
|
-#include <linux/namei.h>
|
|
|
-
|
|
|
-#include "ext4_extents.h"
|
|
|
-#include "xattr.h"
|
|
|
-
|
|
|
-/* Encryption added and removed here! (L: */
|
|
|
-
|
|
|
-static unsigned int num_prealloc_crypto_pages = 32;
|
|
|
-static unsigned int num_prealloc_crypto_ctxs = 128;
|
|
|
-
|
|
|
-module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
|
-MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
|
- "Number of crypto pages to preallocate");
|
|
|
-module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
|
|
-MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
|
|
- "Number of crypto contexts to preallocate");
|
|
|
-
|
|
|
-static mempool_t *ext4_bounce_page_pool;
|
|
|
-
|
|
|
-static LIST_HEAD(ext4_free_crypto_ctxs);
|
|
|
-static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
|
|
|
-
|
|
|
-static struct kmem_cache *ext4_crypto_ctx_cachep;
|
|
|
-struct kmem_cache *ext4_crypt_info_cachep;
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_release_crypto_ctx() - Releases an encryption context
|
|
|
- * @ctx: The encryption context to release.
|
|
|
- *
|
|
|
- * If the encryption context was allocated from the pre-allocated pool, returns
|
|
|
- * it to that pool. Else, frees it.
|
|
|
- *
|
|
|
- * If there's a bounce page in the context, this frees that.
|
|
|
- */
|
|
|
-void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
|
|
|
-{
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
|
|
|
- mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
|
|
|
- ctx->w.bounce_page = NULL;
|
|
|
- ctx->w.control_page = NULL;
|
|
|
- if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
|
|
- kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
|
|
|
- } else {
|
|
|
- spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
|
- list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
|
- spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_get_crypto_ctx() - Gets an encryption context
|
|
|
- * @inode: The inode for which we are doing the crypto
|
|
|
- *
|
|
|
- * Allocates and initializes an encryption context.
|
|
|
- *
|
|
|
- * Return: An allocated and initialized encryption context on success; error
|
|
|
- * value or NULL otherwise.
|
|
|
- */
|
|
|
-struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode,
|
|
|
- gfp_t gfp_flags)
|
|
|
-{
|
|
|
- struct ext4_crypto_ctx *ctx = NULL;
|
|
|
- int res = 0;
|
|
|
- unsigned long flags;
|
|
|
- struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
|
|
|
-
|
|
|
- if (ci == NULL)
|
|
|
- return ERR_PTR(-ENOKEY);
|
|
|
-
|
|
|
- /*
|
|
|
- * We first try getting the ctx from a free list because in
|
|
|
- * the common case the ctx will have an allocated and
|
|
|
- * initialized crypto tfm, so it's probably a worthwhile
|
|
|
- * optimization. For the bounce page, we first try getting it
|
|
|
- * from the kernel allocator because that's just about as fast
|
|
|
- * as getting it from a list and because a cache of free pages
|
|
|
- * should generally be a "last resort" option for a filesystem
|
|
|
- * to be able to do its job.
|
|
|
- */
|
|
|
- spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
|
- ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
|
|
|
- struct ext4_crypto_ctx, free_list);
|
|
|
- if (ctx)
|
|
|
- list_del(&ctx->free_list);
|
|
|
- spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
|
- if (!ctx) {
|
|
|
- ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags);
|
|
|
- if (!ctx) {
|
|
|
- res = -ENOMEM;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
- } else {
|
|
|
- ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
|
- }
|
|
|
- ctx->flags &= ~EXT4_WRITE_PATH_FL;
|
|
|
-
|
|
|
-out:
|
|
|
- if (res) {
|
|
|
- if (!IS_ERR_OR_NULL(ctx))
|
|
|
- ext4_release_crypto_ctx(ctx);
|
|
|
- ctx = ERR_PTR(res);
|
|
|
- }
|
|
|
- return ctx;
|
|
|
-}
|
|
|
-
|
|
|
-struct workqueue_struct *ext4_read_workqueue;
|
|
|
-static DEFINE_MUTEX(crypto_init);
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_exit_crypto() - Shutdown the ext4 encryption system
|
|
|
- */
|
|
|
-void ext4_exit_crypto(void)
|
|
|
-{
|
|
|
- struct ext4_crypto_ctx *pos, *n;
|
|
|
-
|
|
|
- list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
|
|
|
- kmem_cache_free(ext4_crypto_ctx_cachep, pos);
|
|
|
- INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
|
|
|
- if (ext4_bounce_page_pool)
|
|
|
- mempool_destroy(ext4_bounce_page_pool);
|
|
|
- ext4_bounce_page_pool = NULL;
|
|
|
- if (ext4_read_workqueue)
|
|
|
- destroy_workqueue(ext4_read_workqueue);
|
|
|
- ext4_read_workqueue = NULL;
|
|
|
- if (ext4_crypto_ctx_cachep)
|
|
|
- kmem_cache_destroy(ext4_crypto_ctx_cachep);
|
|
|
- ext4_crypto_ctx_cachep = NULL;
|
|
|
- if (ext4_crypt_info_cachep)
|
|
|
- kmem_cache_destroy(ext4_crypt_info_cachep);
|
|
|
- ext4_crypt_info_cachep = NULL;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_init_crypto() - Set up for ext4 encryption.
|
|
|
- *
|
|
|
- * We only call this when we start accessing encrypted files, since it
|
|
|
- * results in memory getting allocated that wouldn't otherwise be used.
|
|
|
- *
|
|
|
- * Return: Zero on success, non-zero otherwise.
|
|
|
- */
|
|
|
-int ext4_init_crypto(void)
|
|
|
-{
|
|
|
- int i, res = -ENOMEM;
|
|
|
-
|
|
|
- mutex_lock(&crypto_init);
|
|
|
- if (ext4_read_workqueue)
|
|
|
- goto already_initialized;
|
|
|
- ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
|
|
|
- if (!ext4_read_workqueue)
|
|
|
- goto fail;
|
|
|
-
|
|
|
- ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
|
|
|
- SLAB_RECLAIM_ACCOUNT);
|
|
|
- if (!ext4_crypto_ctx_cachep)
|
|
|
- goto fail;
|
|
|
-
|
|
|
- ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
|
|
|
- SLAB_RECLAIM_ACCOUNT);
|
|
|
- if (!ext4_crypt_info_cachep)
|
|
|
- goto fail;
|
|
|
-
|
|
|
- for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
|
|
- struct ext4_crypto_ctx *ctx;
|
|
|
-
|
|
|
- ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
|
|
|
- if (!ctx) {
|
|
|
- res = -ENOMEM;
|
|
|
- goto fail;
|
|
|
- }
|
|
|
- list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
|
- }
|
|
|
-
|
|
|
- ext4_bounce_page_pool =
|
|
|
- mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
|
- if (!ext4_bounce_page_pool) {
|
|
|
- res = -ENOMEM;
|
|
|
- goto fail;
|
|
|
- }
|
|
|
-already_initialized:
|
|
|
- mutex_unlock(&crypto_init);
|
|
|
- return 0;
|
|
|
-fail:
|
|
|
- ext4_exit_crypto();
|
|
|
- mutex_unlock(&crypto_init);
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-void ext4_restore_control_page(struct page *data_page)
|
|
|
-{
|
|
|
- struct ext4_crypto_ctx *ctx =
|
|
|
- (struct ext4_crypto_ctx *)page_private(data_page);
|
|
|
-
|
|
|
- set_page_private(data_page, (unsigned long)NULL);
|
|
|
- ClearPagePrivate(data_page);
|
|
|
- unlock_page(data_page);
|
|
|
- ext4_release_crypto_ctx(ctx);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_crypt_complete() - The completion callback for page encryption
|
|
|
- * @req: The asynchronous encryption request context
|
|
|
- * @res: The result of the encryption operation
|
|
|
- */
|
|
|
-static void ext4_crypt_complete(struct crypto_async_request *req, int res)
|
|
|
-{
|
|
|
- struct ext4_completion_result *ecr = req->data;
|
|
|
-
|
|
|
- if (res == -EINPROGRESS)
|
|
|
- return;
|
|
|
- ecr->res = res;
|
|
|
- complete(&ecr->completion);
|
|
|
-}
|
|
|
-
|
|
|
-typedef enum {
|
|
|
- EXT4_DECRYPT = 0,
|
|
|
- EXT4_ENCRYPT,
|
|
|
-} ext4_direction_t;
|
|
|
-
|
|
|
-static int ext4_page_crypto(struct inode *inode,
|
|
|
- ext4_direction_t rw,
|
|
|
- pgoff_t index,
|
|
|
- struct page *src_page,
|
|
|
- struct page *dest_page,
|
|
|
- gfp_t gfp_flags)
|
|
|
-
|
|
|
-{
|
|
|
- u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
|
|
|
- struct skcipher_request *req = NULL;
|
|
|
- DECLARE_EXT4_COMPLETION_RESULT(ecr);
|
|
|
- struct scatterlist dst, src;
|
|
|
- struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
|
|
|
- struct crypto_skcipher *tfm = ci->ci_ctfm;
|
|
|
- int res = 0;
|
|
|
-
|
|
|
- req = skcipher_request_alloc(tfm, gfp_flags);
|
|
|
- if (!req) {
|
|
|
- printk_ratelimited(KERN_ERR
|
|
|
- "%s: crypto_request_alloc() failed\n",
|
|
|
- __func__);
|
|
|
- return -ENOMEM;
|
|
|
- }
|
|
|
- skcipher_request_set_callback(
|
|
|
- req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
|
- ext4_crypt_complete, &ecr);
|
|
|
-
|
|
|
- BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
|
|
|
- memcpy(xts_tweak, &index, sizeof(index));
|
|
|
- memset(&xts_tweak[sizeof(index)], 0,
|
|
|
- EXT4_XTS_TWEAK_SIZE - sizeof(index));
|
|
|
-
|
|
|
- sg_init_table(&dst, 1);
|
|
|
- sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
|
|
|
- sg_init_table(&src, 1);
|
|
|
- sg_set_page(&src, src_page, PAGE_SIZE, 0);
|
|
|
- skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
|
|
|
- xts_tweak);
|
|
|
- if (rw == EXT4_DECRYPT)
|
|
|
- res = crypto_skcipher_decrypt(req);
|
|
|
- else
|
|
|
- res = crypto_skcipher_encrypt(req);
|
|
|
- if (res == -EINPROGRESS || res == -EBUSY) {
|
|
|
- wait_for_completion(&ecr.completion);
|
|
|
- res = ecr.res;
|
|
|
- }
|
|
|
- skcipher_request_free(req);
|
|
|
- if (res) {
|
|
|
- printk_ratelimited(
|
|
|
- KERN_ERR
|
|
|
- "%s: crypto_skcipher_encrypt() returned %d\n",
|
|
|
- __func__, res);
|
|
|
- return res;
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx,
|
|
|
- gfp_t gfp_flags)
|
|
|
-{
|
|
|
- ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags);
|
|
|
- if (ctx->w.bounce_page == NULL)
|
|
|
- return ERR_PTR(-ENOMEM);
|
|
|
- ctx->flags |= EXT4_WRITE_PATH_FL;
|
|
|
- return ctx->w.bounce_page;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_encrypt() - Encrypts a page
|
|
|
- * @inode: The inode for which the encryption should take place
|
|
|
- * @plaintext_page: The page to encrypt. Must be locked.
|
|
|
- *
|
|
|
- * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
|
|
- * encryption context.
|
|
|
- *
|
|
|
- * Called on the page write path. The caller must call
|
|
|
- * ext4_restore_control_page() on the returned ciphertext page to
|
|
|
- * release the bounce buffer and the encryption context.
|
|
|
- *
|
|
|
- * Return: An allocated page with the encrypted content on success. Else, an
|
|
|
- * error value or NULL.
|
|
|
- */
|
|
|
-struct page *ext4_encrypt(struct inode *inode,
|
|
|
- struct page *plaintext_page,
|
|
|
- gfp_t gfp_flags)
|
|
|
-{
|
|
|
- struct ext4_crypto_ctx *ctx;
|
|
|
- struct page *ciphertext_page = NULL;
|
|
|
- int err;
|
|
|
-
|
|
|
- BUG_ON(!PageLocked(plaintext_page));
|
|
|
-
|
|
|
- ctx = ext4_get_crypto_ctx(inode, gfp_flags);
|
|
|
- if (IS_ERR(ctx))
|
|
|
- return (struct page *) ctx;
|
|
|
-
|
|
|
- /* The encryption operation will require a bounce page. */
|
|
|
- ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
|
|
|
- if (IS_ERR(ciphertext_page))
|
|
|
- goto errout;
|
|
|
- ctx->w.control_page = plaintext_page;
|
|
|
- err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
|
|
|
- plaintext_page, ciphertext_page, gfp_flags);
|
|
|
- if (err) {
|
|
|
- ciphertext_page = ERR_PTR(err);
|
|
|
- errout:
|
|
|
- ext4_release_crypto_ctx(ctx);
|
|
|
- return ciphertext_page;
|
|
|
- }
|
|
|
- SetPagePrivate(ciphertext_page);
|
|
|
- set_page_private(ciphertext_page, (unsigned long)ctx);
|
|
|
- lock_page(ciphertext_page);
|
|
|
- return ciphertext_page;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_decrypt() - Decrypts a page in-place
|
|
|
- * @ctx: The encryption context.
|
|
|
- * @page: The page to decrypt. Must be locked.
|
|
|
- *
|
|
|
- * Decrypts page in-place using the ctx encryption context.
|
|
|
- *
|
|
|
- * Called from the read completion callback.
|
|
|
- *
|
|
|
- * Return: Zero on success, non-zero otherwise.
|
|
|
- */
|
|
|
-int ext4_decrypt(struct page *page)
|
|
|
-{
|
|
|
- BUG_ON(!PageLocked(page));
|
|
|
-
|
|
|
- return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT,
|
|
|
- page->index, page, page, GFP_NOFS);
|
|
|
-}
|
|
|
-
|
|
|
-int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk,
|
|
|
- ext4_fsblk_t pblk, ext4_lblk_t len)
|
|
|
-{
|
|
|
- struct ext4_crypto_ctx *ctx;
|
|
|
- struct page *ciphertext_page = NULL;
|
|
|
- struct bio *bio;
|
|
|
- int ret, err = 0;
|
|
|
-
|
|
|
-#if 0
|
|
|
- ext4_msg(inode->i_sb, KERN_CRIT,
|
|
|
- "ext4_encrypted_zeroout ino %lu lblk %u len %u",
|
|
|
- (unsigned long) inode->i_ino, lblk, len);
|
|
|
-#endif
|
|
|
-
|
|
|
- BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
|
|
|
-
|
|
|
- ctx = ext4_get_crypto_ctx(inode, GFP_NOFS);
|
|
|
- if (IS_ERR(ctx))
|
|
|
- return PTR_ERR(ctx);
|
|
|
-
|
|
|
- ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
|
|
|
- if (IS_ERR(ciphertext_page)) {
|
|
|
- err = PTR_ERR(ciphertext_page);
|
|
|
- goto errout;
|
|
|
- }
|
|
|
-
|
|
|
- while (len--) {
|
|
|
- err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
|
|
|
- ZERO_PAGE(0), ciphertext_page,
|
|
|
- GFP_NOFS);
|
|
|
- if (err)
|
|
|
- goto errout;
|
|
|
-
|
|
|
- bio = bio_alloc(GFP_NOWAIT, 1);
|
|
|
- if (!bio) {
|
|
|
- err = -ENOMEM;
|
|
|
- goto errout;
|
|
|
- }
|
|
|
- bio->bi_bdev = inode->i_sb->s_bdev;
|
|
|
- bio->bi_iter.bi_sector =
|
|
|
- pblk << (inode->i_sb->s_blocksize_bits - 9);
|
|
|
- bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
|
- ret = bio_add_page(bio, ciphertext_page,
|
|
|
- inode->i_sb->s_blocksize, 0);
|
|
|
- if (ret != inode->i_sb->s_blocksize) {
|
|
|
- /* should never happen! */
|
|
|
- ext4_msg(inode->i_sb, KERN_ERR,
|
|
|
- "bio_add_page failed: %d", ret);
|
|
|
- WARN_ON(1);
|
|
|
- bio_put(bio);
|
|
|
- err = -EIO;
|
|
|
- goto errout;
|
|
|
- }
|
|
|
- err = submit_bio_wait(bio);
|
|
|
- if ((err == 0) && bio->bi_error)
|
|
|
- err = -EIO;
|
|
|
- bio_put(bio);
|
|
|
- if (err)
|
|
|
- goto errout;
|
|
|
- lblk++; pblk++;
|
|
|
- }
|
|
|
- err = 0;
|
|
|
-errout:
|
|
|
- ext4_release_crypto_ctx(ctx);
|
|
|
- return err;
|
|
|
-}
|
|
|
-
|
|
|
-bool ext4_valid_contents_enc_mode(uint32_t mode)
|
|
|
-{
|
|
|
- return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ext4_validate_encryption_key_size() - Validate the encryption key size
|
|
|
- * @mode: The key mode.
|
|
|
- * @size: The key size to validate.
|
|
|
- *
|
|
|
- * Return: The validated key size for @mode. Zero if invalid.
|
|
|
- */
|
|
|
-uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
|
|
|
-{
|
|
|
- if (size == ext4_encryption_key_size(mode))
|
|
|
- return size;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Validate dentries for encrypted directories to make sure we aren't
|
|
|
- * potentially caching stale data after a key has been added or
|
|
|
- * removed.
|
|
|
- */
|
|
|
-static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
|
|
|
-{
|
|
|
- struct dentry *dir;
|
|
|
- struct ext4_crypt_info *ci;
|
|
|
- int dir_has_key, cached_with_key;
|
|
|
-
|
|
|
- if (flags & LOOKUP_RCU)
|
|
|
- return -ECHILD;
|
|
|
-
|
|
|
- dir = dget_parent(dentry);
|
|
|
- if (!ext4_encrypted_inode(d_inode(dir))) {
|
|
|
- dput(dir);
|
|
|
- return 0;
|
|
|
- }
|
|
|
- ci = EXT4_I(d_inode(dir))->i_crypt_info;
|
|
|
- if (ci && ci->ci_keyring_key &&
|
|
|
- (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
|
|
- (1 << KEY_FLAG_REVOKED) |
|
|
|
- (1 << KEY_FLAG_DEAD))))
|
|
|
- ci = NULL;
|
|
|
-
|
|
|
- /* this should eventually be an flag in d_flags */
|
|
|
- cached_with_key = dentry->d_fsdata != NULL;
|
|
|
- dir_has_key = (ci != NULL);
|
|
|
- dput(dir);
|
|
|
-
|
|
|
- /*
|
|
|
- * If the dentry was cached without the key, and it is a
|
|
|
- * negative dentry, it might be a valid name. We can't check
|
|
|
- * if the key has since been made available due to locking
|
|
|
- * reasons, so we fail the validation so ext4_lookup() can do
|
|
|
- * this check.
|
|
|
- *
|
|
|
- * We also fail the validation if the dentry was created with
|
|
|
- * the key present, but we no longer have the key, or vice versa.
|
|
|
- */
|
|
|
- if ((!cached_with_key && d_is_negative(dentry)) ||
|
|
|
- (!cached_with_key && dir_has_key) ||
|
|
|
- (cached_with_key && !dir_has_key)) {
|
|
|
-#if 0 /* Revalidation debug */
|
|
|
- char buf[80];
|
|
|
- char *cp = simple_dname(dentry, buf, sizeof(buf));
|
|
|
-
|
|
|
- if (IS_ERR(cp))
|
|
|
- cp = (char *) "???";
|
|
|
- pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
|
|
|
- cached_with_key, d_is_negative(dentry),
|
|
|
- dir_has_key);
|
|
|
-#endif
|
|
|
- return 0;
|
|
|
- }
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-const struct dentry_operations ext4_encrypted_d_ops = {
|
|
|
- .d_revalidate = ext4_d_revalidate,
|
|
|
-};
|