|
@@ -41,6 +41,421 @@
|
|
#include <linux/kthread.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/freezer.h>
|
|
|
|
|
|
|
|
+STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
|
|
|
|
+ struct xfs_perag *pag, struct xfs_inode *ip);
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Allocate and initialise an xfs_inode.
|
|
|
|
+ */
|
|
|
|
+STATIC struct xfs_inode *
|
|
|
|
+xfs_inode_alloc(
|
|
|
|
+ struct xfs_mount *mp,
|
|
|
|
+ xfs_ino_t ino)
|
|
|
|
+{
|
|
|
|
+ struct xfs_inode *ip;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * if this didn't occur in transactions, we could use
|
|
|
|
+ * KM_MAYFAIL and return NULL here on ENOMEM. Set the
|
|
|
|
+ * code up to do this anyway.
|
|
|
|
+ */
|
|
|
|
+ ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
|
|
|
|
+ if (!ip)
|
|
|
|
+ return NULL;
|
|
|
|
+ if (inode_init_always(mp->m_super, VFS_I(ip))) {
|
|
|
|
+ kmem_zone_free(xfs_inode_zone, ip);
|
|
|
|
+ return NULL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
|
|
+ ASSERT(!spin_is_locked(&ip->i_flags_lock));
|
|
|
|
+ ASSERT(!xfs_isiflocked(ip));
|
|
|
|
+ ASSERT(ip->i_ino == 0);
|
|
|
|
+
|
|
|
|
+ mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
|
|
|
|
+
|
|
|
|
+ /* initialise the xfs inode */
|
|
|
|
+ ip->i_ino = ino;
|
|
|
|
+ ip->i_mount = mp;
|
|
|
|
+ memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
|
|
|
|
+ ip->i_afp = NULL;
|
|
|
|
+ memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
|
|
|
|
+ ip->i_flags = 0;
|
|
|
|
+ ip->i_delayed_blks = 0;
|
|
|
|
+ memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
|
|
|
|
+
|
|
|
|
+ return ip;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+STATIC void
|
|
|
|
+xfs_inode_free_callback(
|
|
|
|
+ struct rcu_head *head)
|
|
|
|
+{
|
|
|
|
+ struct inode *inode = container_of(head, struct inode, i_rcu);
|
|
|
|
+ struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
+
|
|
|
|
+ kmem_zone_free(xfs_inode_zone, ip);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+STATIC void
|
|
|
|
+xfs_inode_free(
|
|
|
|
+ struct xfs_inode *ip)
|
|
|
|
+{
|
|
|
|
+ switch (ip->i_d.di_mode & S_IFMT) {
|
|
|
|
+ case S_IFREG:
|
|
|
|
+ case S_IFDIR:
|
|
|
|
+ case S_IFLNK:
|
|
|
|
+ xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (ip->i_afp)
|
|
|
|
+ xfs_idestroy_fork(ip, XFS_ATTR_FORK);
|
|
|
|
+
|
|
|
|
+ if (ip->i_itemp) {
|
|
|
|
+ ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
|
|
|
|
+ xfs_inode_item_destroy(ip);
|
|
|
|
+ ip->i_itemp = NULL;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* asserts to verify all state is correct here */
|
|
|
|
+ ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
|
|
+ ASSERT(!spin_is_locked(&ip->i_flags_lock));
|
|
|
|
+ ASSERT(!xfs_isiflocked(ip));
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Because we use RCU freeing we need to ensure the inode always
|
|
|
|
+ * appears to be reclaimed with an invalid inode number when in the
|
|
|
|
+ * free state. The ip->i_flags_lock provides the barrier against lookup
|
|
|
|
+ * races.
|
|
|
|
+ */
|
|
|
|
+ spin_lock(&ip->i_flags_lock);
|
|
|
|
+ ip->i_flags = XFS_IRECLAIM;
|
|
|
|
+ ip->i_ino = 0;
|
|
|
|
+ spin_unlock(&ip->i_flags_lock);
|
|
|
|
+
|
|
|
|
+ call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Check the validity of the inode we just found it the cache
|
|
|
|
+ */
|
|
|
|
+static int
|
|
|
|
+xfs_iget_cache_hit(
|
|
|
|
+ struct xfs_perag *pag,
|
|
|
|
+ struct xfs_inode *ip,
|
|
|
|
+ xfs_ino_t ino,
|
|
|
|
+ int flags,
|
|
|
|
+ int lock_flags) __releases(RCU)
|
|
|
|
+{
|
|
|
|
+ struct inode *inode = VFS_I(ip);
|
|
|
|
+ struct xfs_mount *mp = ip->i_mount;
|
|
|
|
+ int error;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * check for re-use of an inode within an RCU grace period due to the
|
|
|
|
+ * radix tree nodes not being updated yet. We monitor for this by
|
|
|
|
+ * setting the inode number to zero before freeing the inode structure.
|
|
|
|
+ * If the inode has been reallocated and set up, then the inode number
|
|
|
|
+ * will not match, so check for that, too.
|
|
|
|
+ */
|
|
|
|
+ spin_lock(&ip->i_flags_lock);
|
|
|
|
+ if (ip->i_ino != ino) {
|
|
|
|
+ trace_xfs_iget_skip(ip);
|
|
|
|
+ XFS_STATS_INC(xs_ig_frecycle);
|
|
|
|
+ error = EAGAIN;
|
|
|
|
+ goto out_error;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If we are racing with another cache hit that is currently
|
|
|
|
+ * instantiating this inode or currently recycling it out of
|
|
|
|
+ * reclaimabe state, wait for the initialisation to complete
|
|
|
|
+ * before continuing.
|
|
|
|
+ *
|
|
|
|
+ * XXX(hch): eventually we should do something equivalent to
|
|
|
|
+ * wait_on_inode to wait for these flags to be cleared
|
|
|
|
+ * instead of polling for it.
|
|
|
|
+ */
|
|
|
|
+ if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
|
|
|
|
+ trace_xfs_iget_skip(ip);
|
|
|
|
+ XFS_STATS_INC(xs_ig_frecycle);
|
|
|
|
+ error = EAGAIN;
|
|
|
|
+ goto out_error;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If lookup is racing with unlink return an error immediately.
|
|
|
|
+ */
|
|
|
|
+ if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
|
|
|
|
+ error = ENOENT;
|
|
|
|
+ goto out_error;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If IRECLAIMABLE is set, we've torn down the VFS inode already.
|
|
|
|
+ * Need to carefully get it back into useable state.
|
|
|
|
+ */
|
|
|
|
+ if (ip->i_flags & XFS_IRECLAIMABLE) {
|
|
|
|
+ trace_xfs_iget_reclaim(ip);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
|
|
|
|
+ * from stomping over us while we recycle the inode. We can't
|
|
|
|
+ * clear the radix tree reclaimable tag yet as it requires
|
|
|
|
+ * pag_ici_lock to be held exclusive.
|
|
|
|
+ */
|
|
|
|
+ ip->i_flags |= XFS_IRECLAIM;
|
|
|
|
+
|
|
|
|
+ spin_unlock(&ip->i_flags_lock);
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+
|
|
|
|
+ error = -inode_init_always(mp->m_super, inode);
|
|
|
|
+ if (error) {
|
|
|
|
+ /*
|
|
|
|
+ * Re-initializing the inode failed, and we are in deep
|
|
|
|
+ * trouble. Try to re-add it to the reclaim list.
|
|
|
|
+ */
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ spin_lock(&ip->i_flags_lock);
|
|
|
|
+
|
|
|
|
+ ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
|
|
|
|
+ ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
|
|
|
|
+ trace_xfs_iget_reclaim_fail(ip);
|
|
|
|
+ goto out_error;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ spin_lock(&pag->pag_ici_lock);
|
|
|
|
+ spin_lock(&ip->i_flags_lock);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Clear the per-lifetime state in the inode as we are now
|
|
|
|
+ * effectively a new inode and need to return to the initial
|
|
|
|
+ * state before reuse occurs.
|
|
|
|
+ */
|
|
|
|
+ ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
|
|
|
|
+ ip->i_flags |= XFS_INEW;
|
|
|
|
+ __xfs_inode_clear_reclaim_tag(mp, pag, ip);
|
|
|
|
+ inode->i_state = I_NEW;
|
|
|
|
+
|
|
|
|
+ ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
|
|
|
|
+ mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
|
|
|
|
+
|
|
|
|
+ spin_unlock(&ip->i_flags_lock);
|
|
|
|
+ spin_unlock(&pag->pag_ici_lock);
|
|
|
|
+ } else {
|
|
|
|
+ /* If the VFS inode is being torn down, pause and try again. */
|
|
|
|
+ if (!igrab(inode)) {
|
|
|
|
+ trace_xfs_iget_skip(ip);
|
|
|
|
+ error = EAGAIN;
|
|
|
|
+ goto out_error;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* We've got a live one. */
|
|
|
|
+ spin_unlock(&ip->i_flags_lock);
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ trace_xfs_iget_hit(ip);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (lock_flags != 0)
|
|
|
|
+ xfs_ilock(ip, lock_flags);
|
|
|
|
+
|
|
|
|
+ xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
|
|
|
|
+ XFS_STATS_INC(xs_ig_found);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+out_error:
|
|
|
|
+ spin_unlock(&ip->i_flags_lock);
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ return error;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+static int
|
|
|
|
+xfs_iget_cache_miss(
|
|
|
|
+ struct xfs_mount *mp,
|
|
|
|
+ struct xfs_perag *pag,
|
|
|
|
+ xfs_trans_t *tp,
|
|
|
|
+ xfs_ino_t ino,
|
|
|
|
+ struct xfs_inode **ipp,
|
|
|
|
+ int flags,
|
|
|
|
+ int lock_flags)
|
|
|
|
+{
|
|
|
|
+ struct xfs_inode *ip;
|
|
|
|
+ int error;
|
|
|
|
+ xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
+ int iflags;
|
|
|
|
+
|
|
|
|
+ ip = xfs_inode_alloc(mp, ino);
|
|
|
|
+ if (!ip)
|
|
|
|
+ return ENOMEM;
|
|
|
|
+
|
|
|
|
+ error = xfs_iread(mp, tp, ip, flags);
|
|
|
|
+ if (error)
|
|
|
|
+ goto out_destroy;
|
|
|
|
+
|
|
|
|
+ trace_xfs_iget_miss(ip);
|
|
|
|
+
|
|
|
|
+ if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
|
|
|
|
+ error = ENOENT;
|
|
|
|
+ goto out_destroy;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Preload the radix tree so we can insert safely under the
|
|
|
|
+ * write spinlock. Note that we cannot sleep inside the preload
|
|
|
|
+ * region. Since we can be called from transaction context, don't
|
|
|
|
+ * recurse into the file system.
|
|
|
|
+ */
|
|
|
|
+ if (radix_tree_preload(GFP_NOFS)) {
|
|
|
|
+ error = EAGAIN;
|
|
|
|
+ goto out_destroy;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Because the inode hasn't been added to the radix-tree yet it can't
|
|
|
|
+ * be found by another thread, so we can do the non-sleeping lock here.
|
|
|
|
+ */
|
|
|
|
+ if (lock_flags) {
|
|
|
|
+ if (!xfs_ilock_nowait(ip, lock_flags))
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * These values must be set before inserting the inode into the radix
|
|
|
|
+ * tree as the moment it is inserted a concurrent lookup (allowed by the
|
|
|
|
+ * RCU locking mechanism) can find it and that lookup must see that this
|
|
|
|
+ * is an inode currently under construction (i.e. that XFS_INEW is set).
|
|
|
|
+ * The ip->i_flags_lock that protects the XFS_INEW flag forms the
|
|
|
|
+ * memory barrier that ensures this detection works correctly at lookup
|
|
|
|
+ * time.
|
|
|
|
+ */
|
|
|
|
+ iflags = XFS_INEW;
|
|
|
|
+ if (flags & XFS_IGET_DONTCACHE)
|
|
|
|
+ iflags |= XFS_IDONTCACHE;
|
|
|
|
+ ip->i_udquot = ip->i_gdquot = NULL;
|
|
|
|
+ xfs_iflags_set(ip, iflags);
|
|
|
|
+
|
|
|
|
+ /* insert the new inode */
|
|
|
|
+ spin_lock(&pag->pag_ici_lock);
|
|
|
|
+ error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
|
|
|
|
+ if (unlikely(error)) {
|
|
|
|
+ WARN_ON(error != -EEXIST);
|
|
|
|
+ XFS_STATS_INC(xs_ig_dup);
|
|
|
|
+ error = EAGAIN;
|
|
|
|
+ goto out_preload_end;
|
|
|
|
+ }
|
|
|
|
+ spin_unlock(&pag->pag_ici_lock);
|
|
|
|
+ radix_tree_preload_end();
|
|
|
|
+
|
|
|
|
+ *ipp = ip;
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+out_preload_end:
|
|
|
|
+ spin_unlock(&pag->pag_ici_lock);
|
|
|
|
+ radix_tree_preload_end();
|
|
|
|
+ if (lock_flags)
|
|
|
|
+ xfs_iunlock(ip, lock_flags);
|
|
|
|
+out_destroy:
|
|
|
|
+ __destroy_inode(VFS_I(ip));
|
|
|
|
+ xfs_inode_free(ip);
|
|
|
|
+ return error;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Look up an inode by number in the given file system.
|
|
|
|
+ * The inode is looked up in the cache held in each AG.
|
|
|
|
+ * If the inode is found in the cache, initialise the vfs inode
|
|
|
|
+ * if necessary.
|
|
|
|
+ *
|
|
|
|
+ * If it is not in core, read it in from the file system's device,
|
|
|
|
+ * add it to the cache and initialise the vfs inode.
|
|
|
|
+ *
|
|
|
|
+ * The inode is locked according to the value of the lock_flags parameter.
|
|
|
|
+ * This flag parameter indicates how and if the inode's IO lock and inode lock
|
|
|
|
+ * should be taken.
|
|
|
|
+ *
|
|
|
|
+ * mp -- the mount point structure for the current file system. It points
|
|
|
|
+ * to the inode hash table.
|
|
|
|
+ * tp -- a pointer to the current transaction if there is one. This is
|
|
|
|
+ * simply passed through to the xfs_iread() call.
|
|
|
|
+ * ino -- the number of the inode desired. This is the unique identifier
|
|
|
|
+ * within the file system for the inode being requested.
|
|
|
|
+ * lock_flags -- flags indicating how to lock the inode. See the comment
|
|
|
|
+ * for xfs_ilock() for a list of valid values.
|
|
|
|
+ */
|
|
|
|
+int
|
|
|
|
+xfs_iget(
|
|
|
|
+ xfs_mount_t *mp,
|
|
|
|
+ xfs_trans_t *tp,
|
|
|
|
+ xfs_ino_t ino,
|
|
|
|
+ uint flags,
|
|
|
|
+ uint lock_flags,
|
|
|
|
+ xfs_inode_t **ipp)
|
|
|
|
+{
|
|
|
|
+ xfs_inode_t *ip;
|
|
|
|
+ int error;
|
|
|
|
+ xfs_perag_t *pag;
|
|
|
|
+ xfs_agino_t agino;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * xfs_reclaim_inode() uses the ILOCK to ensure an inode
|
|
|
|
+ * doesn't get freed while it's being referenced during a
|
|
|
|
+ * radix tree traversal here. It assumes this function
|
|
|
|
+ * aqcuires only the ILOCK (and therefore it has no need to
|
|
|
|
+ * involve the IOLOCK in this synchronization).
|
|
|
|
+ */
|
|
|
|
+ ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
|
|
|
|
+
|
|
|
|
+ /* reject inode numbers outside existing AGs */
|
|
|
|
+ if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
|
|
|
|
+ return EINVAL;
|
|
|
|
+
|
|
|
|
+ /* get the perag structure and ensure that it's inode capable */
|
|
|
|
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
|
|
|
|
+ agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
+
|
|
|
|
+again:
|
|
|
|
+ error = 0;
|
|
|
|
+ rcu_read_lock();
|
|
|
|
+ ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
|
|
+
|
|
|
|
+ if (ip) {
|
|
|
|
+ error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
|
|
|
|
+ if (error)
|
|
|
|
+ goto out_error_or_again;
|
|
|
|
+ } else {
|
|
|
|
+ rcu_read_unlock();
|
|
|
|
+ XFS_STATS_INC(xs_ig_missed);
|
|
|
|
+
|
|
|
|
+ error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
|
|
|
|
+ flags, lock_flags);
|
|
|
|
+ if (error)
|
|
|
|
+ goto out_error_or_again;
|
|
|
|
+ }
|
|
|
|
+ xfs_perag_put(pag);
|
|
|
|
+
|
|
|
|
+ *ipp = ip;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If we have a real type for an on-disk inode, we can set ops(&unlock)
|
|
|
|
+ * now. If it's a new inode being created, xfs_ialloc will handle it.
|
|
|
|
+ */
|
|
|
|
+ if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
|
|
|
|
+ xfs_setup_inode(ip);
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+out_error_or_again:
|
|
|
|
+ if (error == EAGAIN) {
|
|
|
|
+ delay(1);
|
|
|
|
+ goto again;
|
|
|
|
+ }
|
|
|
|
+ xfs_perag_put(pag);
|
|
|
|
+ return error;
|
|
|
|
+}
|
|
|
|
+
|
|
/*
|
|
/*
|
|
* The inode lookup is done in batches to keep the amount of lock traffic and
|
|
* The inode lookup is done in batches to keep the amount of lock traffic and
|
|
* radix tree lookups to a minimum. The batch size is a trade off between
|
|
* radix tree lookups to a minimum. The batch size is a trade off between
|
|
@@ -253,7 +668,7 @@ xfs_reclaim_worker(
|
|
xfs_reclaim_work_queue(mp);
|
|
xfs_reclaim_work_queue(mp);
|
|
}
|
|
}
|
|
|
|
|
|
-void
|
|
|
|
|
|
+static void
|
|
__xfs_inode_set_reclaim_tag(
|
|
__xfs_inode_set_reclaim_tag(
|
|
struct xfs_perag *pag,
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip)
|
|
struct xfs_inode *ip)
|
|
@@ -319,7 +734,7 @@ __xfs_inode_clear_reclaim(
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
-void
|
|
|
|
|
|
+STATIC void
|
|
__xfs_inode_clear_reclaim_tag(
|
|
__xfs_inode_clear_reclaim_tag(
|
|
xfs_mount_t *mp,
|
|
xfs_mount_t *mp,
|
|
xfs_perag_t *pag,
|
|
xfs_perag_t *pag,
|
|
@@ -542,7 +957,7 @@ out:
|
|
* then a shut down during filesystem unmount reclaim walk leak all the
|
|
* then a shut down during filesystem unmount reclaim walk leak all the
|
|
* unreclaimed inodes.
|
|
* unreclaimed inodes.
|
|
*/
|
|
*/
|
|
-int
|
|
|
|
|
|
+STATIC int
|
|
xfs_reclaim_inodes_ag(
|
|
xfs_reclaim_inodes_ag(
|
|
struct xfs_mount *mp,
|
|
struct xfs_mount *mp,
|
|
int flags,
|
|
int flags,
|