|
@@ -16,6 +16,7 @@
|
|
#include <linux/udp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/moduleparam.h>
|
|
|
|
+#include <linux/iommu.h>
|
|
#include <net/ip.h>
|
|
#include <net/ip.h>
|
|
#include <net/checksum.h>
|
|
#include <net/checksum.h>
|
|
#include "net_driver.h"
|
|
#include "net_driver.h"
|
|
@@ -24,85 +25,39 @@
|
|
#include "selftest.h"
|
|
#include "selftest.h"
|
|
#include "workarounds.h"
|
|
#include "workarounds.h"
|
|
|
|
|
|
-/* Number of RX descriptors pushed at once. */
|
|
|
|
-#define EFX_RX_BATCH 8
|
|
|
|
|
|
+/* Preferred number of descriptors to fill at once */
|
|
|
|
+#define EFX_RX_PREFERRED_BATCH 8U
|
|
|
|
|
|
-/* Maximum size of a buffer sharing a page */
|
|
|
|
-#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
|
|
|
|
|
|
+/* Number of RX buffers to recycle pages for. When creating the RX page recycle
|
|
|
|
+ * ring, this number is divided by the number of buffers per page to calculate
|
|
|
|
+ * the number of pages to store in the RX page recycle ring.
|
|
|
|
+ */
|
|
|
|
+#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
|
|
|
|
+#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
|
|
|
|
|
|
/* Size of buffer allocated for skb header area. */
|
|
/* Size of buffer allocated for skb header area. */
|
|
#define EFX_SKB_HEADERS 64u
|
|
#define EFX_SKB_HEADERS 64u
|
|
|
|
|
|
-/*
|
|
|
|
- * rx_alloc_method - RX buffer allocation method
|
|
|
|
- *
|
|
|
|
- * This driver supports two methods for allocating and using RX buffers:
|
|
|
|
- * each RX buffer may be backed by an skb or by an order-n page.
|
|
|
|
- *
|
|
|
|
- * When GRO is in use then the second method has a lower overhead,
|
|
|
|
- * since we don't have to allocate then free skbs on reassembled frames.
|
|
|
|
- *
|
|
|
|
- * Values:
|
|
|
|
- * - RX_ALLOC_METHOD_AUTO = 0
|
|
|
|
- * - RX_ALLOC_METHOD_SKB = 1
|
|
|
|
- * - RX_ALLOC_METHOD_PAGE = 2
|
|
|
|
- *
|
|
|
|
- * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
|
|
|
|
- * controlled by the parameters below.
|
|
|
|
- *
|
|
|
|
- * - Since pushing and popping descriptors are separated by the rx_queue
|
|
|
|
- * size, so the watermarks should be ~rxd_size.
|
|
|
|
- * - The performance win by using page-based allocation for GRO is less
|
|
|
|
- * than the performance hit of using page-based allocation of non-GRO,
|
|
|
|
- * so the watermarks should reflect this.
|
|
|
|
- *
|
|
|
|
- * Per channel we maintain a single variable, updated by each channel:
|
|
|
|
- *
|
|
|
|
- * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
|
|
|
|
- * RX_ALLOC_FACTOR_SKB)
|
|
|
|
- * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
|
|
|
|
- * limits the hysteresis), and update the allocation strategy:
|
|
|
|
- *
|
|
|
|
- * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
|
|
|
|
- * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
|
|
|
|
- */
|
|
|
|
-static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
|
|
|
|
-
|
|
|
|
-#define RX_ALLOC_LEVEL_GRO 0x2000
|
|
|
|
-#define RX_ALLOC_LEVEL_MAX 0x3000
|
|
|
|
-#define RX_ALLOC_FACTOR_GRO 1
|
|
|
|
-#define RX_ALLOC_FACTOR_SKB (-2)
|
|
|
|
-
|
|
|
|
/* This is the percentage fill level below which new RX descriptors
|
|
/* This is the percentage fill level below which new RX descriptors
|
|
* will be added to the RX descriptor ring.
|
|
* will be added to the RX descriptor ring.
|
|
*/
|
|
*/
|
|
static unsigned int rx_refill_threshold;
|
|
static unsigned int rx_refill_threshold;
|
|
|
|
|
|
|
|
+/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
|
|
|
|
+#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
|
|
|
|
+ EFX_RX_USR_BUF_SIZE)
|
|
|
|
+
|
|
/*
|
|
/*
|
|
* RX maximum head room required.
|
|
* RX maximum head room required.
|
|
*
|
|
*
|
|
- * This must be at least 1 to prevent overflow and at least 2 to allow
|
|
|
|
- * pipelined receives.
|
|
|
|
|
|
+ * This must be at least 1 to prevent overflow, plus one packet-worth
|
|
|
|
+ * to allow pipelined receives.
|
|
*/
|
|
*/
|
|
-#define EFX_RXD_HEAD_ROOM 2
|
|
|
|
|
|
+#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
|
|
|
|
|
|
-/* Offset of ethernet header within page */
|
|
|
|
-static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
|
|
|
|
- struct efx_rx_buffer *buf)
|
|
|
|
|
|
+static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
|
|
{
|
|
{
|
|
- return buf->page_offset + efx->type->rx_buffer_hash_size;
|
|
|
|
-}
|
|
|
|
-static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
|
|
|
|
-{
|
|
|
|
- return PAGE_SIZE << efx->rx_buffer_order;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
|
|
|
|
-{
|
|
|
|
- if (buf->flags & EFX_RX_BUF_PAGE)
|
|
|
|
- return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
|
|
|
|
- else
|
|
|
|
- return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
|
|
|
|
|
|
+ return page_address(buf->page) + buf->page_offset;
|
|
}
|
|
}
|
|
|
|
|
|
static inline u32 efx_rx_buf_hash(const u8 *eh)
|
|
static inline u32 efx_rx_buf_hash(const u8 *eh)
|
|
@@ -119,66 +74,81 @@ static inline u32 efx_rx_buf_hash(const u8 *eh)
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
-/**
|
|
|
|
- * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
|
|
|
|
- *
|
|
|
|
- * @rx_queue: Efx RX queue
|
|
|
|
- *
|
|
|
|
- * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
|
|
|
|
- * struct efx_rx_buffer for each one. Return a negative error code or 0
|
|
|
|
- * on success. May fail having only inserted fewer than EFX_RX_BATCH
|
|
|
|
- * buffers.
|
|
|
|
- */
|
|
|
|
-static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
|
|
|
|
|
|
+static inline struct efx_rx_buffer *
|
|
|
|
+efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
|
|
|
|
+{
|
|
|
|
+ if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
|
|
|
|
+ return efx_rx_buffer(rx_queue, 0);
|
|
|
|
+ else
|
|
|
|
+ return rx_buf + 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void efx_sync_rx_buffer(struct efx_nic *efx,
|
|
|
|
+ struct efx_rx_buffer *rx_buf,
|
|
|
|
+ unsigned int len)
|
|
|
|
+{
|
|
|
|
+ dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
|
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void efx_rx_config_page_split(struct efx_nic *efx)
|
|
|
|
+{
|
|
|
|
+ efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + EFX_PAGE_IP_ALIGN,
|
|
|
|
+ L1_CACHE_BYTES);
|
|
|
|
+ efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
|
|
|
|
+ ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
|
|
|
|
+ efx->rx_page_buf_step);
|
|
|
|
+ efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
|
|
|
|
+ efx->rx_bufs_per_page;
|
|
|
|
+ efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
|
|
|
|
+ efx->rx_bufs_per_page);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* Check the RX page recycle ring for a page that can be reused. */
|
|
|
|
+static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
|
|
{
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
- struct net_device *net_dev = efx->net_dev;
|
|
|
|
- struct efx_rx_buffer *rx_buf;
|
|
|
|
- struct sk_buff *skb;
|
|
|
|
- int skb_len = efx->rx_buffer_len;
|
|
|
|
- unsigned index, count;
|
|
|
|
|
|
+ struct page *page;
|
|
|
|
+ struct efx_rx_page_state *state;
|
|
|
|
+ unsigned index;
|
|
|
|
|
|
- for (count = 0; count < EFX_RX_BATCH; ++count) {
|
|
|
|
- index = rx_queue->added_count & rx_queue->ptr_mask;
|
|
|
|
- rx_buf = efx_rx_buffer(rx_queue, index);
|
|
|
|
-
|
|
|
|
- rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
|
|
|
|
- if (unlikely(!skb))
|
|
|
|
- return -ENOMEM;
|
|
|
|
-
|
|
|
|
- /* Adjust the SKB for padding */
|
|
|
|
- skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
- rx_buf->len = skb_len - NET_IP_ALIGN;
|
|
|
|
- rx_buf->flags = 0;
|
|
|
|
-
|
|
|
|
- rx_buf->dma_addr = dma_map_single(&efx->pci_dev->dev,
|
|
|
|
- skb->data, rx_buf->len,
|
|
|
|
- DMA_FROM_DEVICE);
|
|
|
|
- if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
|
|
|
|
- rx_buf->dma_addr))) {
|
|
|
|
- dev_kfree_skb_any(skb);
|
|
|
|
- rx_buf->u.skb = NULL;
|
|
|
|
- return -EIO;
|
|
|
|
- }
|
|
|
|
|
|
+ index = rx_queue->page_remove & rx_queue->page_ptr_mask;
|
|
|
|
+ page = rx_queue->page_ring[index];
|
|
|
|
+ if (page == NULL)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ rx_queue->page_ring[index] = NULL;
|
|
|
|
+ /* page_remove cannot exceed page_add. */
|
|
|
|
+ if (rx_queue->page_remove != rx_queue->page_add)
|
|
|
|
+ ++rx_queue->page_remove;
|
|
|
|
|
|
- ++rx_queue->added_count;
|
|
|
|
- ++rx_queue->alloc_skb_count;
|
|
|
|
|
|
+ /* If page_count is 1 then we hold the only reference to this page. */
|
|
|
|
+ if (page_count(page) == 1) {
|
|
|
|
+ ++rx_queue->page_recycle_count;
|
|
|
|
+ return page;
|
|
|
|
+ } else {
|
|
|
|
+ state = page_address(page);
|
|
|
|
+ dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
|
|
|
|
+ PAGE_SIZE << efx->rx_buffer_order,
|
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
|
+ put_page(page);
|
|
|
|
+ ++rx_queue->page_recycle_failed;
|
|
}
|
|
}
|
|
|
|
|
|
- return 0;
|
|
|
|
|
|
+ return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
/**
|
|
- * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
|
|
|
|
|
|
+ * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
|
|
*
|
|
*
|
|
* @rx_queue: Efx RX queue
|
|
* @rx_queue: Efx RX queue
|
|
*
|
|
*
|
|
- * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
|
|
|
|
- * and populates struct efx_rx_buffers for each one. Return a negative error
|
|
|
|
- * code or 0 on success. If a single page can be split between two buffers,
|
|
|
|
- * then the page will either be inserted fully, or not at at all.
|
|
|
|
|
|
+ * This allocates a batch of pages, maps them for DMA, and populates
|
|
|
|
+ * struct efx_rx_buffers for each one. Return a negative error code or
|
|
|
|
+ * 0 on success. If a single page can be used for multiple buffers,
|
|
|
|
+ * then the page will either be inserted fully, or not at all.
|
|
*/
|
|
*/
|
|
-static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
|
|
|
|
|
|
+static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
|
|
{
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_rx_buffer *rx_buf;
|
|
struct efx_rx_buffer *rx_buf;
|
|
@@ -188,150 +158,140 @@ static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
|
|
dma_addr_t dma_addr;
|
|
dma_addr_t dma_addr;
|
|
unsigned index, count;
|
|
unsigned index, count;
|
|
|
|
|
|
- /* We can split a page between two buffers */
|
|
|
|
- BUILD_BUG_ON(EFX_RX_BATCH & 1);
|
|
|
|
-
|
|
|
|
- for (count = 0; count < EFX_RX_BATCH; ++count) {
|
|
|
|
- page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
|
|
|
|
- efx->rx_buffer_order);
|
|
|
|
- if (unlikely(page == NULL))
|
|
|
|
- return -ENOMEM;
|
|
|
|
- dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
|
|
|
|
- efx_rx_buf_size(efx),
|
|
|
|
- DMA_FROM_DEVICE);
|
|
|
|
- if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
|
|
|
|
- __free_pages(page, efx->rx_buffer_order);
|
|
|
|
- return -EIO;
|
|
|
|
|
|
+ count = 0;
|
|
|
|
+ do {
|
|
|
|
+ page = efx_reuse_page(rx_queue);
|
|
|
|
+ if (page == NULL) {
|
|
|
|
+ page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
|
|
|
|
+ efx->rx_buffer_order);
|
|
|
|
+ if (unlikely(page == NULL))
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+ dma_addr =
|
|
|
|
+ dma_map_page(&efx->pci_dev->dev, page, 0,
|
|
|
|
+ PAGE_SIZE << efx->rx_buffer_order,
|
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
|
+ if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
|
|
|
|
+ dma_addr))) {
|
|
|
|
+ __free_pages(page, efx->rx_buffer_order);
|
|
|
|
+ return -EIO;
|
|
|
|
+ }
|
|
|
|
+ state = page_address(page);
|
|
|
|
+ state->dma_addr = dma_addr;
|
|
|
|
+ } else {
|
|
|
|
+ state = page_address(page);
|
|
|
|
+ dma_addr = state->dma_addr;
|
|
}
|
|
}
|
|
- state = page_address(page);
|
|
|
|
- state->refcnt = 0;
|
|
|
|
- state->dma_addr = dma_addr;
|
|
|
|
|
|
|
|
dma_addr += sizeof(struct efx_rx_page_state);
|
|
dma_addr += sizeof(struct efx_rx_page_state);
|
|
page_offset = sizeof(struct efx_rx_page_state);
|
|
page_offset = sizeof(struct efx_rx_page_state);
|
|
|
|
|
|
- split:
|
|
|
|
- index = rx_queue->added_count & rx_queue->ptr_mask;
|
|
|
|
- rx_buf = efx_rx_buffer(rx_queue, index);
|
|
|
|
- rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
|
|
|
|
- rx_buf->u.page = page;
|
|
|
|
- rx_buf->page_offset = page_offset;
|
|
|
|
- rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
|
|
|
|
- rx_buf->flags = EFX_RX_BUF_PAGE;
|
|
|
|
- ++rx_queue->added_count;
|
|
|
|
- ++rx_queue->alloc_page_count;
|
|
|
|
- ++state->refcnt;
|
|
|
|
-
|
|
|
|
- if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
|
|
|
|
- /* Use the second half of the page */
|
|
|
|
|
|
+ do {
|
|
|
|
+ index = rx_queue->added_count & rx_queue->ptr_mask;
|
|
|
|
+ rx_buf = efx_rx_buffer(rx_queue, index);
|
|
|
|
+ rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
|
|
|
|
+ rx_buf->page = page;
|
|
|
|
+ rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
|
|
|
|
+ rx_buf->len = efx->rx_dma_len;
|
|
|
|
+ rx_buf->flags = 0;
|
|
|
|
+ ++rx_queue->added_count;
|
|
get_page(page);
|
|
get_page(page);
|
|
- dma_addr += (PAGE_SIZE >> 1);
|
|
|
|
- page_offset += (PAGE_SIZE >> 1);
|
|
|
|
- ++count;
|
|
|
|
- goto split;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
|
|
+ dma_addr += efx->rx_page_buf_step;
|
|
|
|
+ page_offset += efx->rx_page_buf_step;
|
|
|
|
+ } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
|
|
|
|
+
|
|
|
|
+ rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
|
|
|
|
+ } while (++count < efx->rx_pages_per_batch);
|
|
|
|
|
|
return 0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+/* Unmap a DMA-mapped page. This function is only called for the final RX
|
|
|
|
+ * buffer in a page.
|
|
|
|
+ */
|
|
static void efx_unmap_rx_buffer(struct efx_nic *efx,
|
|
static void efx_unmap_rx_buffer(struct efx_nic *efx,
|
|
- struct efx_rx_buffer *rx_buf,
|
|
|
|
- unsigned int used_len)
|
|
|
|
|
|
+ struct efx_rx_buffer *rx_buf)
|
|
{
|
|
{
|
|
- if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
|
|
|
|
- struct efx_rx_page_state *state;
|
|
|
|
-
|
|
|
|
- state = page_address(rx_buf->u.page);
|
|
|
|
- if (--state->refcnt == 0) {
|
|
|
|
- dma_unmap_page(&efx->pci_dev->dev,
|
|
|
|
- state->dma_addr,
|
|
|
|
- efx_rx_buf_size(efx),
|
|
|
|
- DMA_FROM_DEVICE);
|
|
|
|
- } else if (used_len) {
|
|
|
|
- dma_sync_single_for_cpu(&efx->pci_dev->dev,
|
|
|
|
- rx_buf->dma_addr, used_len,
|
|
|
|
- DMA_FROM_DEVICE);
|
|
|
|
- }
|
|
|
|
- } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
|
|
|
|
- dma_unmap_single(&efx->pci_dev->dev, rx_buf->dma_addr,
|
|
|
|
- rx_buf->len, DMA_FROM_DEVICE);
|
|
|
|
|
|
+ struct page *page = rx_buf->page;
|
|
|
|
+
|
|
|
|
+ if (page) {
|
|
|
|
+ struct efx_rx_page_state *state = page_address(page);
|
|
|
|
+ dma_unmap_page(&efx->pci_dev->dev,
|
|
|
|
+ state->dma_addr,
|
|
|
|
+ PAGE_SIZE << efx->rx_buffer_order,
|
|
|
|
+ DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
-static void efx_free_rx_buffer(struct efx_nic *efx,
|
|
|
|
- struct efx_rx_buffer *rx_buf)
|
|
|
|
|
|
+static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
|
|
{
|
|
{
|
|
- if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
|
|
|
|
- __free_pages(rx_buf->u.page, efx->rx_buffer_order);
|
|
|
|
- rx_buf->u.page = NULL;
|
|
|
|
- } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
|
|
|
|
- dev_kfree_skb_any(rx_buf->u.skb);
|
|
|
|
- rx_buf->u.skb = NULL;
|
|
|
|
|
|
+ if (rx_buf->page) {
|
|
|
|
+ put_page(rx_buf->page);
|
|
|
|
+ rx_buf->page = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
-static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
|
|
|
|
- struct efx_rx_buffer *rx_buf)
|
|
|
|
|
|
+/* Attempt to recycle the page if there is an RX recycle ring; the page can
|
|
|
|
+ * only be added if this is the final RX buffer, to prevent pages being used in
|
|
|
|
+ * the descriptor ring and appearing in the recycle ring simultaneously.
|
|
|
|
+ */
|
|
|
|
+static void efx_recycle_rx_page(struct efx_channel *channel,
|
|
|
|
+ struct efx_rx_buffer *rx_buf)
|
|
{
|
|
{
|
|
- efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
|
|
|
|
- efx_free_rx_buffer(rx_queue->efx, rx_buf);
|
|
|
|
-}
|
|
|
|
|
|
+ struct page *page = rx_buf->page;
|
|
|
|
+ struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
+ struct efx_nic *efx = rx_queue->efx;
|
|
|
|
+ unsigned index;
|
|
|
|
|
|
-/* Attempt to resurrect the other receive buffer that used to share this page,
|
|
|
|
- * which had previously been passed up to the kernel and freed. */
|
|
|
|
-static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
|
|
|
|
- struct efx_rx_buffer *rx_buf)
|
|
|
|
-{
|
|
|
|
- struct efx_rx_page_state *state = page_address(rx_buf->u.page);
|
|
|
|
- struct efx_rx_buffer *new_buf;
|
|
|
|
- unsigned fill_level, index;
|
|
|
|
-
|
|
|
|
- /* +1 because efx_rx_packet() incremented removed_count. +1 because
|
|
|
|
- * we'd like to insert an additional descriptor whilst leaving
|
|
|
|
- * EFX_RXD_HEAD_ROOM for the non-recycle path */
|
|
|
|
- fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
|
|
|
|
- if (unlikely(fill_level > rx_queue->max_fill)) {
|
|
|
|
- /* We could place "state" on a list, and drain the list in
|
|
|
|
- * efx_fast_push_rx_descriptors(). For now, this will do. */
|
|
|
|
|
|
+ /* Only recycle the page after processing the final buffer. */
|
|
|
|
+ if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
|
|
return;
|
|
return;
|
|
- }
|
|
|
|
|
|
|
|
- ++state->refcnt;
|
|
|
|
- get_page(rx_buf->u.page);
|
|
|
|
|
|
+ index = rx_queue->page_add & rx_queue->page_ptr_mask;
|
|
|
|
+ if (rx_queue->page_ring[index] == NULL) {
|
|
|
|
+ unsigned read_index = rx_queue->page_remove &
|
|
|
|
+ rx_queue->page_ptr_mask;
|
|
|
|
|
|
- index = rx_queue->added_count & rx_queue->ptr_mask;
|
|
|
|
- new_buf = efx_rx_buffer(rx_queue, index);
|
|
|
|
- new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
|
|
|
|
- new_buf->u.page = rx_buf->u.page;
|
|
|
|
- new_buf->len = rx_buf->len;
|
|
|
|
- new_buf->flags = EFX_RX_BUF_PAGE;
|
|
|
|
- ++rx_queue->added_count;
|
|
|
|
|
|
+ /* The next slot in the recycle ring is available, but
|
|
|
|
+ * increment page_remove if the read pointer currently
|
|
|
|
+ * points here.
|
|
|
|
+ */
|
|
|
|
+ if (read_index == index)
|
|
|
|
+ ++rx_queue->page_remove;
|
|
|
|
+ rx_queue->page_ring[index] = page;
|
|
|
|
+ ++rx_queue->page_add;
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ ++rx_queue->page_recycle_full;
|
|
|
|
+ efx_unmap_rx_buffer(efx, rx_buf);
|
|
|
|
+ put_page(rx_buf->page);
|
|
}
|
|
}
|
|
|
|
|
|
-/* Recycle the given rx buffer directly back into the rx_queue. There is
|
|
|
|
- * always room to add this buffer, because we've just popped a buffer. */
|
|
|
|
-static void efx_recycle_rx_buffer(struct efx_channel *channel,
|
|
|
|
- struct efx_rx_buffer *rx_buf)
|
|
|
|
|
|
+static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
|
|
|
|
+ struct efx_rx_buffer *rx_buf)
|
|
{
|
|
{
|
|
- struct efx_nic *efx = channel->efx;
|
|
|
|
- struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
- struct efx_rx_buffer *new_buf;
|
|
|
|
- unsigned index;
|
|
|
|
-
|
|
|
|
- rx_buf->flags &= EFX_RX_BUF_PAGE;
|
|
|
|
-
|
|
|
|
- if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
|
|
|
|
- efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
|
|
|
|
- page_count(rx_buf->u.page) == 1)
|
|
|
|
- efx_resurrect_rx_buffer(rx_queue, rx_buf);
|
|
|
|
|
|
+ /* Release the page reference we hold for the buffer. */
|
|
|
|
+ if (rx_buf->page)
|
|
|
|
+ put_page(rx_buf->page);
|
|
|
|
+
|
|
|
|
+ /* If this is the last buffer in a page, unmap and free it. */
|
|
|
|
+ if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
|
|
|
|
+ efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
|
|
|
|
+ efx_free_rx_buffer(rx_buf);
|
|
|
|
+ }
|
|
|
|
+ rx_buf->page = NULL;
|
|
|
|
+}
|
|
|
|
|
|
- index = rx_queue->added_count & rx_queue->ptr_mask;
|
|
|
|
- new_buf = efx_rx_buffer(rx_queue, index);
|
|
|
|
|
|
+/* Recycle the pages that are used by buffers that have just been received. */
|
|
|
|
+static void efx_recycle_rx_buffers(struct efx_channel *channel,
|
|
|
|
+ struct efx_rx_buffer *rx_buf,
|
|
|
|
+ unsigned int n_frags)
|
|
|
|
+{
|
|
|
|
+ struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
|
|
|
|
|
- memcpy(new_buf, rx_buf, sizeof(*new_buf));
|
|
|
|
- rx_buf->u.page = NULL;
|
|
|
|
- ++rx_queue->added_count;
|
|
|
|
|
|
+ do {
|
|
|
|
+ efx_recycle_rx_page(channel, rx_buf);
|
|
|
|
+ rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
|
|
|
|
+ } while (--n_frags);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
/**
|
|
@@ -348,8 +308,8 @@ static void efx_recycle_rx_buffer(struct efx_channel *channel,
|
|
*/
|
|
*/
|
|
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
|
|
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
|
|
{
|
|
{
|
|
- struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
|
|
|
- unsigned fill_level;
|
|
|
|
|
|
+ struct efx_nic *efx = rx_queue->efx;
|
|
|
|
+ unsigned int fill_level, batch_size;
|
|
int space, rc = 0;
|
|
int space, rc = 0;
|
|
|
|
|
|
/* Calculate current fill level, and exit if we don't need to fill */
|
|
/* Calculate current fill level, and exit if we don't need to fill */
|
|
@@ -364,28 +324,26 @@ void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
|
|
rx_queue->min_fill = fill_level;
|
|
rx_queue->min_fill = fill_level;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+ batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
|
|
space = rx_queue->max_fill - fill_level;
|
|
space = rx_queue->max_fill - fill_level;
|
|
- EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
|
|
|
|
|
|
+ EFX_BUG_ON_PARANOID(space < batch_size);
|
|
|
|
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
"RX queue %d fast-filling descriptor ring from"
|
|
"RX queue %d fast-filling descriptor ring from"
|
|
- " level %d to level %d using %s allocation\n",
|
|
|
|
|
|
+ " level %d to level %d\n",
|
|
efx_rx_queue_index(rx_queue), fill_level,
|
|
efx_rx_queue_index(rx_queue), fill_level,
|
|
- rx_queue->max_fill,
|
|
|
|
- channel->rx_alloc_push_pages ? "page" : "skb");
|
|
|
|
|
|
+ rx_queue->max_fill);
|
|
|
|
+
|
|
|
|
|
|
do {
|
|
do {
|
|
- if (channel->rx_alloc_push_pages)
|
|
|
|
- rc = efx_init_rx_buffers_page(rx_queue);
|
|
|
|
- else
|
|
|
|
- rc = efx_init_rx_buffers_skb(rx_queue);
|
|
|
|
|
|
+ rc = efx_init_rx_buffers(rx_queue);
|
|
if (unlikely(rc)) {
|
|
if (unlikely(rc)) {
|
|
/* Ensure that we don't leave the rx queue empty */
|
|
/* Ensure that we don't leave the rx queue empty */
|
|
if (rx_queue->added_count == rx_queue->removed_count)
|
|
if (rx_queue->added_count == rx_queue->removed_count)
|
|
efx_schedule_slow_fill(rx_queue);
|
|
efx_schedule_slow_fill(rx_queue);
|
|
goto out;
|
|
goto out;
|
|
}
|
|
}
|
|
- } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
|
|
|
|
|
|
+ } while ((space -= batch_size) >= batch_size);
|
|
|
|
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
|
"RX queue %d fast-filled descriptor ring "
|
|
"RX queue %d fast-filled descriptor ring "
|
|
@@ -408,7 +366,7 @@ void efx_rx_slow_fill(unsigned long context)
|
|
|
|
|
|
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|
struct efx_rx_buffer *rx_buf,
|
|
struct efx_rx_buffer *rx_buf,
|
|
- int len, bool *leak_packet)
|
|
|
|
|
|
+ int len)
|
|
{
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
|
|
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
|
|
@@ -428,11 +386,6 @@ static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
|
|
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
|
|
efx_rx_queue_index(rx_queue), len, max_len,
|
|
efx_rx_queue_index(rx_queue), len, max_len,
|
|
efx->type->rx_buffer_padding);
|
|
efx->type->rx_buffer_padding);
|
|
- /* If this buffer was skb-allocated, then the meta
|
|
|
|
- * data at the end of the skb will be trashed. So
|
|
|
|
- * we have no choice but to leak the fragment.
|
|
|
|
- */
|
|
|
|
- *leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
|
|
|
|
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
|
|
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
|
|
} else {
|
|
} else {
|
|
if (net_ratelimit())
|
|
if (net_ratelimit())
|
|
@@ -448,212 +401,238 @@ static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
|
/* Pass a received packet up through GRO. GRO can handle pages
|
|
/* Pass a received packet up through GRO. GRO can handle pages
|
|
* regardless of checksum state and skbs with a good checksum.
|
|
* regardless of checksum state and skbs with a good checksum.
|
|
*/
|
|
*/
|
|
-static void efx_rx_packet_gro(struct efx_channel *channel,
|
|
|
|
- struct efx_rx_buffer *rx_buf,
|
|
|
|
- const u8 *eh)
|
|
|
|
|
|
+static void
|
|
|
|
+efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
|
|
|
|
+ unsigned int n_frags, u8 *eh)
|
|
{
|
|
{
|
|
struct napi_struct *napi = &channel->napi_str;
|
|
struct napi_struct *napi = &channel->napi_str;
|
|
gro_result_t gro_result;
|
|
gro_result_t gro_result;
|
|
|
|
+ struct efx_nic *efx = channel->efx;
|
|
|
|
+ struct sk_buff *skb;
|
|
|
|
|
|
- if (rx_buf->flags & EFX_RX_BUF_PAGE) {
|
|
|
|
- struct efx_nic *efx = channel->efx;
|
|
|
|
- struct page *page = rx_buf->u.page;
|
|
|
|
- struct sk_buff *skb;
|
|
|
|
|
|
+ skb = napi_get_frags(napi);
|
|
|
|
+ if (unlikely(!skb)) {
|
|
|
|
+ while (n_frags--) {
|
|
|
|
+ put_page(rx_buf->page);
|
|
|
|
+ rx_buf->page = NULL;
|
|
|
|
+ rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
|
|
- rx_buf->u.page = NULL;
|
|
|
|
|
|
+ if (efx->net_dev->features & NETIF_F_RXHASH)
|
|
|
|
+ skb->rxhash = efx_rx_buf_hash(eh);
|
|
|
|
+ skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
|
|
|
|
+ CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
|
|
|
|
+
|
|
|
|
+ for (;;) {
|
|
|
|
+ skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
|
|
+ rx_buf->page, rx_buf->page_offset,
|
|
|
|
+ rx_buf->len);
|
|
|
|
+ rx_buf->page = NULL;
|
|
|
|
+ skb->len += rx_buf->len;
|
|
|
|
+ if (skb_shinfo(skb)->nr_frags == n_frags)
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
|
|
+ }
|
|
|
|
|
|
- skb = napi_get_frags(napi);
|
|
|
|
- if (!skb) {
|
|
|
|
- put_page(page);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
|
|
+ skb->data_len = skb->len;
|
|
|
|
+ skb->truesize += n_frags * efx->rx_buffer_truesize;
|
|
|
|
+
|
|
|
|
+ skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
+
|
|
|
|
+ gro_result = napi_gro_frags(napi);
|
|
|
|
+ if (gro_result != GRO_DROP)
|
|
|
|
+ channel->irq_mod_score += 2;
|
|
|
|
+}
|
|
|
|
|
|
- if (efx->net_dev->features & NETIF_F_RXHASH)
|
|
|
|
- skb->rxhash = efx_rx_buf_hash(eh);
|
|
|
|
|
|
+/* Allocate and construct an SKB around page fragments */
|
|
|
|
+static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
|
|
|
|
+ struct efx_rx_buffer *rx_buf,
|
|
|
|
+ unsigned int n_frags,
|
|
|
|
+ u8 *eh, int hdr_len)
|
|
|
|
+{
|
|
|
|
+ struct efx_nic *efx = channel->efx;
|
|
|
|
+ struct sk_buff *skb;
|
|
|
|
|
|
- skb_fill_page_desc(skb, 0, page,
|
|
|
|
- efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
|
|
|
|
|
|
+ /* Allocate an SKB to store the headers */
|
|
|
|
+ skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
|
|
|
|
+ if (unlikely(skb == NULL))
|
|
|
|
+ return NULL;
|
|
|
|
|
|
- skb->len = rx_buf->len;
|
|
|
|
- skb->data_len = rx_buf->len;
|
|
|
|
- skb->truesize += rx_buf->len;
|
|
|
|
- skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
|
|
|
|
- CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
|
|
|
|
|
|
+ EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
|
|
|
|
|
|
- skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
|
|
+ skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
|
|
|
|
+ memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
|
|
|
|
|
|
- gro_result = napi_gro_frags(napi);
|
|
|
|
- } else {
|
|
|
|
- struct sk_buff *skb = rx_buf->u.skb;
|
|
|
|
|
|
+ /* Append the remaining page(s) onto the frag list */
|
|
|
|
+ if (rx_buf->len > hdr_len) {
|
|
|
|
+ rx_buf->page_offset += hdr_len;
|
|
|
|
+ rx_buf->len -= hdr_len;
|
|
|
|
|
|
- EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
|
|
|
|
- rx_buf->u.skb = NULL;
|
|
|
|
- skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
|
|
+ for (;;) {
|
|
|
|
+ skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
|
|
|
|
+ rx_buf->page, rx_buf->page_offset,
|
|
|
|
+ rx_buf->len);
|
|
|
|
+ rx_buf->page = NULL;
|
|
|
|
+ skb->len += rx_buf->len;
|
|
|
|
+ skb->data_len += rx_buf->len;
|
|
|
|
+ if (skb_shinfo(skb)->nr_frags == n_frags)
|
|
|
|
+ break;
|
|
|
|
|
|
- gro_result = napi_gro_receive(napi, skb);
|
|
|
|
|
|
+ rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ __free_pages(rx_buf->page, efx->rx_buffer_order);
|
|
|
|
+ rx_buf->page = NULL;
|
|
|
|
+ n_frags = 0;
|
|
}
|
|
}
|
|
|
|
|
|
- if (gro_result == GRO_NORMAL) {
|
|
|
|
- channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
|
|
|
|
- } else if (gro_result != GRO_DROP) {
|
|
|
|
- channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
|
|
|
|
- channel->irq_mod_score += 2;
|
|
|
|
- }
|
|
|
|
|
|
+ skb->truesize += n_frags * efx->rx_buffer_truesize;
|
|
|
|
+
|
|
|
|
+ /* Move past the ethernet header */
|
|
|
|
+ skb->protocol = eth_type_trans(skb, efx->net_dev);
|
|
|
|
+
|
|
|
|
+ return skb;
|
|
}
|
|
}
|
|
|
|
|
|
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
|
|
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
|
|
- unsigned int len, u16 flags)
|
|
|
|
|
|
+ unsigned int n_frags, unsigned int len, u16 flags)
|
|
{
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
|
struct efx_rx_buffer *rx_buf;
|
|
struct efx_rx_buffer *rx_buf;
|
|
- bool leak_packet = false;
|
|
|
|
|
|
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
rx_buf->flags |= flags;
|
|
rx_buf->flags |= flags;
|
|
|
|
|
|
- /* This allows the refill path to post another buffer.
|
|
|
|
- * EFX_RXD_HEAD_ROOM ensures that the slot we are using
|
|
|
|
- * isn't overwritten yet.
|
|
|
|
- */
|
|
|
|
- rx_queue->removed_count++;
|
|
|
|
-
|
|
|
|
- /* Validate the length encoded in the event vs the descriptor pushed */
|
|
|
|
- efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
|
|
|
|
|
|
+ /* Validate the number of fragments and completed length */
|
|
|
|
+ if (n_frags == 1) {
|
|
|
|
+ efx_rx_packet__check_len(rx_queue, rx_buf, len);
|
|
|
|
+ } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
|
|
|
|
+ unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) ||
|
|
|
|
+ unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) ||
|
|
|
|
+ unlikely(!efx->rx_scatter)) {
|
|
|
|
+ /* If this isn't an explicit discard request, either
|
|
|
|
+ * the hardware or the driver is broken.
|
|
|
|
+ */
|
|
|
|
+ WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
|
|
|
|
+ rx_buf->flags |= EFX_RX_PKT_DISCARD;
|
|
|
|
+ }
|
|
|
|
|
|
netif_vdbg(efx, rx_status, efx->net_dev,
|
|
netif_vdbg(efx, rx_status, efx->net_dev,
|
|
- "RX queue %d received id %x at %llx+%x %s%s\n",
|
|
|
|
|
|
+ "RX queue %d received ids %x-%x len %d %s%s\n",
|
|
efx_rx_queue_index(rx_queue), index,
|
|
efx_rx_queue_index(rx_queue), index,
|
|
- (unsigned long long)rx_buf->dma_addr, len,
|
|
|
|
|
|
+ (index + n_frags - 1) & rx_queue->ptr_mask, len,
|
|
(rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
|
|
(rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
|
|
(rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
|
|
(rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
|
|
|
|
|
|
- /* Discard packet, if instructed to do so */
|
|
|
|
|
|
+ /* Discard packet, if instructed to do so. Process the
|
|
|
|
+ * previous receive first.
|
|
|
|
+ */
|
|
if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
|
|
if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
|
|
- if (unlikely(leak_packet))
|
|
|
|
- channel->n_skbuff_leaks++;
|
|
|
|
- else
|
|
|
|
- efx_recycle_rx_buffer(channel, rx_buf);
|
|
|
|
-
|
|
|
|
- /* Don't hold off the previous receive */
|
|
|
|
- rx_buf = NULL;
|
|
|
|
- goto out;
|
|
|
|
|
|
+ efx_rx_flush_packet(channel);
|
|
|
|
+ put_page(rx_buf->page);
|
|
|
|
+ efx_recycle_rx_buffers(channel, rx_buf, n_frags);
|
|
|
|
+ return;
|
|
}
|
|
}
|
|
|
|
|
|
- /* Release and/or sync DMA mapping - assumes all RX buffers
|
|
|
|
- * consumed in-order per RX queue
|
|
|
|
|
|
+ if (n_frags == 1)
|
|
|
|
+ rx_buf->len = len;
|
|
|
|
+
|
|
|
|
+ /* Release and/or sync the DMA mapping - assumes all RX buffers
|
|
|
|
+ * consumed in-order per RX queue.
|
|
*/
|
|
*/
|
|
- efx_unmap_rx_buffer(efx, rx_buf, len);
|
|
|
|
|
|
+ efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
|
|
|
|
|
|
/* Prefetch nice and early so data will (hopefully) be in cache by
|
|
/* Prefetch nice and early so data will (hopefully) be in cache by
|
|
* the time we look at it.
|
|
* the time we look at it.
|
|
*/
|
|
*/
|
|
- prefetch(efx_rx_buf_eh(efx, rx_buf));
|
|
|
|
|
|
+ prefetch(efx_rx_buf_va(rx_buf));
|
|
|
|
+
|
|
|
|
+ rx_buf->page_offset += efx->type->rx_buffer_hash_size;
|
|
|
|
+ rx_buf->len -= efx->type->rx_buffer_hash_size;
|
|
|
|
+
|
|
|
|
+ if (n_frags > 1) {
|
|
|
|
+ /* Release/sync DMA mapping for additional fragments.
|
|
|
|
+ * Fix length for last fragment.
|
|
|
|
+ */
|
|
|
|
+ unsigned int tail_frags = n_frags - 1;
|
|
|
|
+
|
|
|
|
+ for (;;) {
|
|
|
|
+ rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
|
|
|
|
+ if (--tail_frags == 0)
|
|
|
|
+ break;
|
|
|
|
+ efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE);
|
|
|
|
+ }
|
|
|
|
+ rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE;
|
|
|
|
+ efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /* All fragments have been DMA-synced, so recycle buffers and pages. */
|
|
|
|
+ rx_buf = efx_rx_buffer(rx_queue, index);
|
|
|
|
+ efx_recycle_rx_buffers(channel, rx_buf, n_frags);
|
|
|
|
|
|
/* Pipeline receives so that we give time for packet headers to be
|
|
/* Pipeline receives so that we give time for packet headers to be
|
|
* prefetched into cache.
|
|
* prefetched into cache.
|
|
*/
|
|
*/
|
|
- rx_buf->len = len - efx->type->rx_buffer_hash_size;
|
|
|
|
-out:
|
|
|
|
- if (channel->rx_pkt)
|
|
|
|
- __efx_rx_packet(channel, channel->rx_pkt);
|
|
|
|
- channel->rx_pkt = rx_buf;
|
|
|
|
|
|
+ efx_rx_flush_packet(channel);
|
|
|
|
+ channel->rx_pkt_n_frags = n_frags;
|
|
|
|
+ channel->rx_pkt_index = index;
|
|
}
|
|
}
|
|
|
|
|
|
-static void efx_rx_deliver(struct efx_channel *channel,
|
|
|
|
- struct efx_rx_buffer *rx_buf)
|
|
|
|
|
|
+static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
|
|
|
|
+ struct efx_rx_buffer *rx_buf,
|
|
|
|
+ unsigned int n_frags)
|
|
{
|
|
{
|
|
struct sk_buff *skb;
|
|
struct sk_buff *skb;
|
|
|
|
+ u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
|
|
|
|
|
|
- /* We now own the SKB */
|
|
|
|
- skb = rx_buf->u.skb;
|
|
|
|
- rx_buf->u.skb = NULL;
|
|
|
|
|
|
+ skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
|
|
|
|
+ if (unlikely(skb == NULL)) {
|
|
|
|
+ efx_free_rx_buffer(rx_buf);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
|
|
/* Set the SKB flags */
|
|
/* Set the SKB flags */
|
|
skb_checksum_none_assert(skb);
|
|
skb_checksum_none_assert(skb);
|
|
|
|
|
|
- /* Record the rx_queue */
|
|
|
|
- skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
-
|
|
|
|
- /* Pass the packet up */
|
|
|
|
if (channel->type->receive_skb)
|
|
if (channel->type->receive_skb)
|
|
- channel->type->receive_skb(channel, skb);
|
|
|
|
- else
|
|
|
|
- netif_receive_skb(skb);
|
|
|
|
|
|
+ if (channel->type->receive_skb(channel, skb))
|
|
|
|
+ return;
|
|
|
|
|
|
- /* Update allocation strategy method */
|
|
|
|
- channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
|
|
|
|
|
|
+ /* Pass the packet up */
|
|
|
|
+ netif_receive_skb(skb);
|
|
}
|
|
}
|
|
|
|
|
|
/* Handle a received packet. Second half: Touches packet payload. */
|
|
/* Handle a received packet. Second half: Touches packet payload. */
|
|
-void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
|
|
|
|
|
|
+void __efx_rx_packet(struct efx_channel *channel)
|
|
{
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct efx_nic *efx = channel->efx;
|
|
- u8 *eh = efx_rx_buf_eh(efx, rx_buf);
|
|
|
|
|
|
+ struct efx_rx_buffer *rx_buf =
|
|
|
|
+ efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
|
|
|
|
+ u8 *eh = efx_rx_buf_va(rx_buf);
|
|
|
|
|
|
/* If we're in loopback test, then pass the packet directly to the
|
|
/* If we're in loopback test, then pass the packet directly to the
|
|
* loopback layer, and free the rx_buf here
|
|
* loopback layer, and free the rx_buf here
|
|
*/
|
|
*/
|
|
if (unlikely(efx->loopback_selftest)) {
|
|
if (unlikely(efx->loopback_selftest)) {
|
|
efx_loopback_rx_packet(efx, eh, rx_buf->len);
|
|
efx_loopback_rx_packet(efx, eh, rx_buf->len);
|
|
- efx_free_rx_buffer(efx, rx_buf);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
|
|
|
|
- struct sk_buff *skb = rx_buf->u.skb;
|
|
|
|
-
|
|
|
|
- prefetch(skb_shinfo(skb));
|
|
|
|
-
|
|
|
|
- skb_reserve(skb, efx->type->rx_buffer_hash_size);
|
|
|
|
- skb_put(skb, rx_buf->len);
|
|
|
|
-
|
|
|
|
- if (efx->net_dev->features & NETIF_F_RXHASH)
|
|
|
|
- skb->rxhash = efx_rx_buf_hash(eh);
|
|
|
|
-
|
|
|
|
- /* Move past the ethernet header. rx_buf->data still points
|
|
|
|
- * at the ethernet header */
|
|
|
|
- skb->protocol = eth_type_trans(skb, efx->net_dev);
|
|
|
|
-
|
|
|
|
- skb_record_rx_queue(skb, channel->rx_queue.core_index);
|
|
|
|
|
|
+ efx_free_rx_buffer(rx_buf);
|
|
|
|
+ goto out;
|
|
}
|
|
}
|
|
|
|
|
|
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
|
|
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
|
|
rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
|
|
rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
|
|
|
|
|
|
- if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)) &&
|
|
|
|
- !channel->type->receive_skb)
|
|
|
|
- efx_rx_packet_gro(channel, rx_buf, eh);
|
|
|
|
|
|
+ if (!channel->type->receive_skb)
|
|
|
|
+ efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
|
|
else
|
|
else
|
|
- efx_rx_deliver(channel, rx_buf);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void efx_rx_strategy(struct efx_channel *channel)
|
|
|
|
-{
|
|
|
|
- enum efx_rx_alloc_method method = rx_alloc_method;
|
|
|
|
-
|
|
|
|
- if (channel->type->receive_skb) {
|
|
|
|
- channel->rx_alloc_push_pages = false;
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* Only makes sense to use page based allocation if GRO is enabled */
|
|
|
|
- if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
|
|
|
|
- method = RX_ALLOC_METHOD_SKB;
|
|
|
|
- } else if (method == RX_ALLOC_METHOD_AUTO) {
|
|
|
|
- /* Constrain the rx_alloc_level */
|
|
|
|
- if (channel->rx_alloc_level < 0)
|
|
|
|
- channel->rx_alloc_level = 0;
|
|
|
|
- else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
|
|
|
|
- channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
|
|
|
|
-
|
|
|
|
- /* Decide on the allocation method */
|
|
|
|
- method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
|
|
|
|
- RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* Push the option */
|
|
|
|
- channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
|
|
|
|
|
|
+ efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
|
|
|
|
+out:
|
|
|
|
+ channel->rx_pkt_n_frags = 0;
|
|
}
|
|
}
|
|
|
|
|
|
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
|
|
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
|
|
@@ -683,9 +662,32 @@ int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
|
|
kfree(rx_queue->buffer);
|
|
kfree(rx_queue->buffer);
|
|
rx_queue->buffer = NULL;
|
|
rx_queue->buffer = NULL;
|
|
}
|
|
}
|
|
|
|
+
|
|
return rc;
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+void efx_init_rx_recycle_ring(struct efx_nic *efx,
|
|
|
|
+ struct efx_rx_queue *rx_queue)
|
|
|
|
+{
|
|
|
|
+ unsigned int bufs_in_recycle_ring, page_ring_size;
|
|
|
|
+
|
|
|
|
+ /* Set the RX recycle ring size */
|
|
|
|
+#ifdef CONFIG_PPC64
|
|
|
|
+ bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
|
|
|
|
+#else
|
|
|
|
+ if (efx->pci_dev->dev.iommu_group)
|
|
|
|
+ bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
|
|
|
|
+ else
|
|
|
|
+ bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
|
|
|
|
+#endif /* CONFIG_PPC64 */
|
|
|
|
+
|
|
|
|
+ page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
|
|
|
|
+ efx->rx_bufs_per_page);
|
|
|
|
+ rx_queue->page_ring = kcalloc(page_ring_size,
|
|
|
|
+ sizeof(*rx_queue->page_ring), GFP_KERNEL);
|
|
|
|
+ rx_queue->page_ptr_mask = page_ring_size - 1;
|
|
|
|
+}
|
|
|
|
+
|
|
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
|
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
@@ -699,10 +701,18 @@ void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
|
rx_queue->notified_count = 0;
|
|
rx_queue->notified_count = 0;
|
|
rx_queue->removed_count = 0;
|
|
rx_queue->removed_count = 0;
|
|
rx_queue->min_fill = -1U;
|
|
rx_queue->min_fill = -1U;
|
|
|
|
+ efx_init_rx_recycle_ring(efx, rx_queue);
|
|
|
|
+
|
|
|
|
+ rx_queue->page_remove = 0;
|
|
|
|
+ rx_queue->page_add = rx_queue->page_ptr_mask + 1;
|
|
|
|
+ rx_queue->page_recycle_count = 0;
|
|
|
|
+ rx_queue->page_recycle_failed = 0;
|
|
|
|
+ rx_queue->page_recycle_full = 0;
|
|
|
|
|
|
/* Initialise limit fields */
|
|
/* Initialise limit fields */
|
|
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
|
|
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
|
|
- max_trigger = max_fill - EFX_RX_BATCH;
|
|
|
|
|
|
+ max_trigger =
|
|
|
|
+ max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
|
|
if (rx_refill_threshold != 0) {
|
|
if (rx_refill_threshold != 0) {
|
|
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
|
|
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
|
|
if (trigger > max_trigger)
|
|
if (trigger > max_trigger)
|
|
@@ -722,6 +732,7 @@ void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
|
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
|
|
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
{
|
|
int i;
|
|
int i;
|
|
|
|
+ struct efx_nic *efx = rx_queue->efx;
|
|
struct efx_rx_buffer *rx_buf;
|
|
struct efx_rx_buffer *rx_buf;
|
|
|
|
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
|
@@ -733,13 +744,32 @@ void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
|
|
del_timer_sync(&rx_queue->slow_fill);
|
|
del_timer_sync(&rx_queue->slow_fill);
|
|
efx_nic_fini_rx(rx_queue);
|
|
efx_nic_fini_rx(rx_queue);
|
|
|
|
|
|
- /* Release RX buffers NB start at index 0 not current HW ptr */
|
|
|
|
|
|
+ /* Release RX buffers from the current read ptr to the write ptr */
|
|
if (rx_queue->buffer) {
|
|
if (rx_queue->buffer) {
|
|
- for (i = 0; i <= rx_queue->ptr_mask; i++) {
|
|
|
|
- rx_buf = efx_rx_buffer(rx_queue, i);
|
|
|
|
|
|
+ for (i = rx_queue->removed_count; i < rx_queue->added_count;
|
|
|
|
+ i++) {
|
|
|
|
+ unsigned index = i & rx_queue->ptr_mask;
|
|
|
|
+ rx_buf = efx_rx_buffer(rx_queue, index);
|
|
efx_fini_rx_buffer(rx_queue, rx_buf);
|
|
efx_fini_rx_buffer(rx_queue, rx_buf);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
+
|
|
|
|
+ /* Unmap and release the pages in the recycle ring. Remove the ring. */
|
|
|
|
+ for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
|
|
|
|
+ struct page *page = rx_queue->page_ring[i];
|
|
|
|
+ struct efx_rx_page_state *state;
|
|
|
|
+
|
|
|
|
+ if (page == NULL)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
|
|
+ state = page_address(page);
|
|
|
|
+ dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
|
|
|
|
+ PAGE_SIZE << efx->rx_buffer_order,
|
|
|
|
+ DMA_FROM_DEVICE);
|
|
|
|
+ put_page(page);
|
|
|
|
+ }
|
|
|
|
+ kfree(rx_queue->page_ring);
|
|
|
|
+ rx_queue->page_ring = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
|
|
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
|
|
@@ -754,9 +784,6 @@ void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-module_param(rx_alloc_method, int, 0644);
|
|
|
|
-MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
|
|
|
|
-
|
|
|
|
module_param(rx_refill_threshold, uint, 0444);
|
|
module_param(rx_refill_threshold, uint, 0444);
|
|
MODULE_PARM_DESC(rx_refill_threshold,
|
|
MODULE_PARM_DESC(rx_refill_threshold,
|
|
"RX descriptor ring refill threshold (%)");
|
|
"RX descriptor ring refill threshold (%)");
|