|
@@ -33,3 +33,103 @@ efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
|
|
|
|
|
|
return rng->get_rng(rng, NULL, size, out);
|
|
|
}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return the number of slots covered by this entry, i.e., the number of
|
|
|
+ * addresses it covers that are suitably aligned and supply enough room
|
|
|
+ * for the allocation.
|
|
|
+ */
|
|
|
+static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
|
|
|
+ unsigned long size,
|
|
|
+ unsigned long align)
|
|
|
+{
|
|
|
+ u64 start, end;
|
|
|
+
|
|
|
+ if (md->type != EFI_CONVENTIONAL_MEMORY)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ start = round_up(md->phys_addr, align);
|
|
|
+ end = round_down(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - size,
|
|
|
+ align);
|
|
|
+
|
|
|
+ if (start > end)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ return (end - start + 1) / align;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * The UEFI memory descriptors have a virtual address field that is only used
|
|
|
+ * when installing the virtual mapping using SetVirtualAddressMap(). Since it
|
|
|
+ * is unused here, we can reuse it to keep track of each descriptor's slot
|
|
|
+ * count.
|
|
|
+ */
|
|
|
+#define MD_NUM_SLOTS(md) ((md)->virt_addr)
|
|
|
+
|
|
|
+efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
|
|
|
+ unsigned long size,
|
|
|
+ unsigned long align,
|
|
|
+ unsigned long *addr,
|
|
|
+ unsigned long random_seed)
|
|
|
+{
|
|
|
+ unsigned long map_size, desc_size, total_slots = 0, target_slot;
|
|
|
+ efi_status_t status;
|
|
|
+ efi_memory_desc_t *memory_map;
|
|
|
+ int map_offset;
|
|
|
+
|
|
|
+ status = efi_get_memory_map(sys_table_arg, &memory_map, &map_size,
|
|
|
+ &desc_size, NULL, NULL);
|
|
|
+ if (status != EFI_SUCCESS)
|
|
|
+ return status;
|
|
|
+
|
|
|
+ if (align < EFI_ALLOC_ALIGN)
|
|
|
+ align = EFI_ALLOC_ALIGN;
|
|
|
+
|
|
|
+ /* count the suitable slots in each memory map entry */
|
|
|
+ for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
|
+ efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
|
+ unsigned long slots;
|
|
|
+
|
|
|
+ slots = get_entry_num_slots(md, size, align);
|
|
|
+ MD_NUM_SLOTS(md) = slots;
|
|
|
+ total_slots += slots;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* find a random number between 0 and total_slots */
|
|
|
+ target_slot = (total_slots * (u16)random_seed) >> 16;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * target_slot is now a value in the range [0, total_slots), and so
|
|
|
+ * it corresponds with exactly one of the suitable slots we recorded
|
|
|
+ * when iterating over the memory map the first time around.
|
|
|
+ *
|
|
|
+ * So iterate over the memory map again, subtracting the number of
|
|
|
+ * slots of each entry at each iteration, until we have found the entry
|
|
|
+ * that covers our chosen slot. Use the residual value of target_slot
|
|
|
+ * to calculate the randomly chosen address, and allocate it directly
|
|
|
+ * using EFI_ALLOCATE_ADDRESS.
|
|
|
+ */
|
|
|
+ for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
|
+ efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
|
+ efi_physical_addr_t target;
|
|
|
+ unsigned long pages;
|
|
|
+
|
|
|
+ if (target_slot >= MD_NUM_SLOTS(md)) {
|
|
|
+ target_slot -= MD_NUM_SLOTS(md);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ target = round_up(md->phys_addr, align) + target_slot * align;
|
|
|
+ pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
|
+
|
|
|
+ status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
|
|
+ EFI_LOADER_DATA, pages, &target);
|
|
|
+ if (status == EFI_SUCCESS)
|
|
|
+ *addr = target;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ efi_call_early(free_pool, memory_map);
|
|
|
+
|
|
|
+ return status;
|
|
|
+}
|