|
@@ -0,0 +1,525 @@
|
|
|
|
+/*
|
|
|
|
+ * arch/arm64/kernel/probes/kprobes.c
|
|
|
|
+ *
|
|
|
|
+ * Kprobes support for ARM64
|
|
|
|
+ *
|
|
|
|
+ * Copyright (C) 2013 Linaro Limited.
|
|
|
|
+ * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
|
|
|
|
+ *
|
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
|
+ * it under the terms of the GNU General Public License version 2 as
|
|
|
|
+ * published by the Free Software Foundation.
|
|
|
|
+ *
|
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
+ * General Public License for more details.
|
|
|
|
+ *
|
|
|
|
+ */
|
|
|
|
+#include <linux/kernel.h>
|
|
|
|
+#include <linux/kprobes.h>
|
|
|
|
+#include <linux/module.h>
|
|
|
|
+#include <linux/slab.h>
|
|
|
|
+#include <linux/stop_machine.h>
|
|
|
|
+#include <linux/stringify.h>
|
|
|
|
+#include <asm/traps.h>
|
|
|
|
+#include <asm/ptrace.h>
|
|
|
|
+#include <asm/cacheflush.h>
|
|
|
|
+#include <asm/debug-monitors.h>
|
|
|
|
+#include <asm/system_misc.h>
|
|
|
|
+#include <asm/insn.h>
|
|
|
|
+#include <asm/uaccess.h>
|
|
|
|
+#include <asm/irq.h>
|
|
|
|
+
|
|
|
|
+#include "decode-insn.h"
|
|
|
|
+
|
|
|
|
+#define MIN_STACK_SIZE(addr) (on_irq_stack(addr, raw_smp_processor_id()) ? \
|
|
|
|
+ min((unsigned long)IRQ_STACK_SIZE, \
|
|
|
|
+ IRQ_STACK_PTR(raw_smp_processor_id()) - (addr)) : \
|
|
|
|
+ min((unsigned long)MAX_STACK_SIZE, \
|
|
|
|
+ (unsigned long)current_thread_info() + THREAD_START_SP - (addr)))
|
|
|
|
+
|
|
|
|
+void jprobe_return_break(void);
|
|
|
|
+
|
|
|
|
+DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
|
|
+DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
+
|
|
|
|
+static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
|
|
|
|
+{
|
|
|
|
+ /* prepare insn slot */
|
|
|
|
+ p->ainsn.insn[0] = cpu_to_le32(p->opcode);
|
|
|
|
+
|
|
|
|
+ flush_icache_range((uintptr_t) (p->ainsn.insn),
|
|
|
|
+ (uintptr_t) (p->ainsn.insn) +
|
|
|
|
+ MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Needs restoring of return address after stepping xol.
|
|
|
|
+ */
|
|
|
|
+ p->ainsn.restore = (unsigned long) p->addr +
|
|
|
|
+ sizeof(kprobe_opcode_t);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
|
|
+{
|
|
|
|
+ unsigned long probe_addr = (unsigned long)p->addr;
|
|
|
|
+ extern char __start_rodata[];
|
|
|
|
+ extern char __end_rodata[];
|
|
|
|
+
|
|
|
|
+ if (probe_addr & 0x3)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ /* copy instruction */
|
|
|
|
+ p->opcode = le32_to_cpu(*p->addr);
|
|
|
|
+
|
|
|
|
+ if (in_exception_text(probe_addr))
|
|
|
|
+ return -EINVAL;
|
|
|
|
+ if (probe_addr >= (unsigned long) __start_rodata &&
|
|
|
|
+ probe_addr <= (unsigned long) __end_rodata)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ /* decode instruction */
|
|
|
|
+ switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
|
|
|
|
+ case INSN_REJECTED: /* insn not supported */
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ case INSN_GOOD: /* instruction uses slot */
|
|
|
|
+ p->ainsn.insn = get_insn_slot();
|
|
|
|
+ if (!p->ainsn.insn)
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+ break;
|
|
|
|
+ };
|
|
|
|
+
|
|
|
|
+ /* prepare the instruction */
|
|
|
|
+ arch_prepare_ss_slot(p);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
|
|
|
|
+{
|
|
|
|
+ void *addrs[1];
|
|
|
|
+ u32 insns[1];
|
|
|
|
+
|
|
|
|
+ addrs[0] = (void *)addr;
|
|
|
|
+ insns[0] = (u32)opcode;
|
|
|
|
+
|
|
|
|
+ return aarch64_insn_patch_text(addrs, insns, 1);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* arm kprobe: install breakpoint in text */
|
|
|
|
+void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
|
|
+{
|
|
|
|
+ patch_text(p->addr, BRK64_OPCODE_KPROBES);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* disarm kprobe: remove breakpoint from text */
|
|
|
|
+void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
|
|
+{
|
|
|
|
+ patch_text(p->addr, p->opcode);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
|
|
+{
|
|
|
|
+ if (p->ainsn.insn) {
|
|
|
|
+ free_insn_slot(p->ainsn.insn, 0);
|
|
|
|
+ p->ainsn.insn = NULL;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
|
+{
|
|
|
|
+ kcb->prev_kprobe.kp = kprobe_running();
|
|
|
|
+ kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
|
|
+{
|
|
|
|
+ __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
|
|
+ kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes set_current_kprobe(struct kprobe *p)
|
|
|
|
+{
|
|
|
|
+ __this_cpu_write(current_kprobe, p);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * The D-flag (Debug mask) is set (masked) upon debug exception entry.
|
|
|
|
+ * Kprobes needs to clear (unmask) D-flag -ONLY- in case of recursive
|
|
|
|
+ * probe i.e. when probe hit from kprobe handler context upon
|
|
|
|
+ * executing the pre/post handlers. In this case we return with
|
|
|
|
+ * D-flag clear so that single-stepping can be carried-out.
|
|
|
|
+ *
|
|
|
|
+ * Leave D-flag set in all other cases.
|
|
|
|
+ */
|
|
|
|
+static void __kprobes
|
|
|
|
+spsr_set_debug_flag(struct pt_regs *regs, int mask)
|
|
|
|
+{
|
|
|
|
+ unsigned long spsr = regs->pstate;
|
|
|
|
+
|
|
|
|
+ if (mask)
|
|
|
|
+ spsr |= PSR_D_BIT;
|
|
|
|
+ else
|
|
|
|
+ spsr &= ~PSR_D_BIT;
|
|
|
|
+
|
|
|
|
+ regs->pstate = spsr;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * Interrupts need to be disabled before single-step mode is set, and not
|
|
|
|
+ * reenabled until after single-step mode ends.
|
|
|
|
+ * Without disabling interrupt on local CPU, there is a chance of
|
|
|
|
+ * interrupt occurrence in the period of exception return and start of
|
|
|
|
+ * out-of-line single-step, that result in wrongly single stepping
|
|
|
|
+ * into the interrupt handler.
|
|
|
|
+ */
|
|
|
|
+static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
|
|
+ struct pt_regs *regs)
|
|
|
|
+{
|
|
|
|
+ kcb->saved_irqflag = regs->pstate;
|
|
|
|
+ regs->pstate |= PSR_I_BIT;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
|
|
+ struct pt_regs *regs)
|
|
|
|
+{
|
|
|
|
+ if (kcb->saved_irqflag & PSR_I_BIT)
|
|
|
|
+ regs->pstate |= PSR_I_BIT;
|
|
|
|
+ else
|
|
|
|
+ regs->pstate &= ~PSR_I_BIT;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes
|
|
|
|
+set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
|
|
|
|
+{
|
|
|
|
+ kcb->ss_ctx.ss_pending = true;
|
|
|
|
+ kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
|
|
|
|
+{
|
|
|
|
+ kcb->ss_ctx.ss_pending = false;
|
|
|
|
+ kcb->ss_ctx.match_addr = 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes setup_singlestep(struct kprobe *p,
|
|
|
|
+ struct pt_regs *regs,
|
|
|
|
+ struct kprobe_ctlblk *kcb, int reenter)
|
|
|
|
+{
|
|
|
|
+ unsigned long slot;
|
|
|
|
+
|
|
|
|
+ if (reenter) {
|
|
|
|
+ save_previous_kprobe(kcb);
|
|
|
|
+ set_current_kprobe(p);
|
|
|
|
+ kcb->kprobe_status = KPROBE_REENTER;
|
|
|
|
+ } else {
|
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SS;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ BUG_ON(!p->ainsn.insn);
|
|
|
|
+
|
|
|
|
+ /* prepare for single stepping */
|
|
|
|
+ slot = (unsigned long)p->ainsn.insn;
|
|
|
|
+
|
|
|
|
+ set_ss_context(kcb, slot); /* mark pending ss */
|
|
|
|
+
|
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER)
|
|
|
|
+ spsr_set_debug_flag(regs, 0);
|
|
|
|
+
|
|
|
|
+ /* IRQs and single stepping do not mix well. */
|
|
|
|
+ kprobes_save_local_irqflag(kcb, regs);
|
|
|
|
+ kernel_enable_single_step(regs);
|
|
|
|
+ instruction_pointer_set(regs, slot);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int __kprobes reenter_kprobe(struct kprobe *p,
|
|
|
|
+ struct pt_regs *regs,
|
|
|
|
+ struct kprobe_ctlblk *kcb)
|
|
|
|
+{
|
|
|
|
+ switch (kcb->kprobe_status) {
|
|
|
|
+ case KPROBE_HIT_SSDONE:
|
|
|
|
+ case KPROBE_HIT_ACTIVE:
|
|
|
|
+ kprobes_inc_nmissed_count(p);
|
|
|
|
+ setup_singlestep(p, regs, kcb, 1);
|
|
|
|
+ break;
|
|
|
|
+ case KPROBE_HIT_SS:
|
|
|
|
+ case KPROBE_REENTER:
|
|
|
|
+ pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
|
|
|
|
+ dump_kprobe(p);
|
|
|
|
+ BUG();
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ WARN_ON(1);
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes
|
|
|
|
+post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
|
|
|
+{
|
|
|
|
+ struct kprobe *cur = kprobe_running();
|
|
|
|
+
|
|
|
|
+ if (!cur)
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ /* return addr restore if non-branching insn */
|
|
|
|
+ if (cur->ainsn.restore != 0)
|
|
|
|
+ instruction_pointer_set(regs, cur->ainsn.restore);
|
|
|
|
+
|
|
|
|
+ /* restore back original saved kprobe variables and continue */
|
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
|
|
+ restore_previous_kprobe(kcb);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ /* call post handler */
|
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
|
|
+ if (cur->post_handler) {
|
|
|
|
+ /* post_handler can hit breakpoint and single step
|
|
|
|
+ * again, so we enable D-flag for recursive exception.
|
|
|
|
+ */
|
|
|
|
+ cur->post_handler(cur, regs, 0);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ reset_current_kprobe();
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
|
|
|
|
+{
|
|
|
|
+ struct kprobe *cur = kprobe_running();
|
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
+
|
|
|
|
+ switch (kcb->kprobe_status) {
|
|
|
|
+ case KPROBE_HIT_SS:
|
|
|
|
+ case KPROBE_REENTER:
|
|
|
|
+ /*
|
|
|
|
+ * We are here because the instruction being single
|
|
|
|
+ * stepped caused a page fault. We reset the current
|
|
|
|
+ * kprobe and the ip points back to the probe address
|
|
|
|
+ * and allow the page fault handler to continue as a
|
|
|
|
+ * normal page fault.
|
|
|
|
+ */
|
|
|
|
+ instruction_pointer_set(regs, (unsigned long) cur->addr);
|
|
|
|
+ if (!instruction_pointer(regs))
|
|
|
|
+ BUG();
|
|
|
|
+
|
|
|
|
+ kernel_disable_single_step();
|
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER)
|
|
|
|
+ spsr_set_debug_flag(regs, 1);
|
|
|
|
+
|
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER)
|
|
|
|
+ restore_previous_kprobe(kcb);
|
|
|
|
+ else
|
|
|
|
+ reset_current_kprobe();
|
|
|
|
+
|
|
|
|
+ break;
|
|
|
|
+ case KPROBE_HIT_ACTIVE:
|
|
|
|
+ case KPROBE_HIT_SSDONE:
|
|
|
|
+ /*
|
|
|
|
+ * We increment the nmissed count for accounting,
|
|
|
|
+ * we can also use npre/npostfault count for accounting
|
|
|
|
+ * these specific fault cases.
|
|
|
|
+ */
|
|
|
|
+ kprobes_inc_nmissed_count(cur);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We come here because instructions in the pre/post
|
|
|
|
+ * handler caused the page_fault, this could happen
|
|
|
|
+ * if handler tries to access user space by
|
|
|
|
+ * copy_from_user(), get_user() etc. Let the
|
|
|
|
+ * user-specified handler try to fix it first.
|
|
|
|
+ */
|
|
|
|
+ if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
|
|
|
|
+ return 1;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * In case the user-specified fault handler returned
|
|
|
|
+ * zero, try to fix up.
|
|
|
|
+ */
|
|
|
|
+ if (fixup_exception(regs))
|
|
|
|
+ return 1;
|
|
|
|
+ }
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
|
|
+ unsigned long val, void *data)
|
|
|
|
+{
|
|
|
|
+ return NOTIFY_DONE;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void __kprobes kprobe_handler(struct pt_regs *regs)
|
|
|
|
+{
|
|
|
|
+ struct kprobe *p, *cur_kprobe;
|
|
|
|
+ struct kprobe_ctlblk *kcb;
|
|
|
|
+ unsigned long addr = instruction_pointer(regs);
|
|
|
|
+
|
|
|
|
+ kcb = get_kprobe_ctlblk();
|
|
|
|
+ cur_kprobe = kprobe_running();
|
|
|
|
+
|
|
|
|
+ p = get_kprobe((kprobe_opcode_t *) addr);
|
|
|
|
+
|
|
|
|
+ if (p) {
|
|
|
|
+ if (cur_kprobe) {
|
|
|
|
+ if (reenter_kprobe(p, regs, kcb))
|
|
|
|
+ return;
|
|
|
|
+ } else {
|
|
|
|
+ /* Probe hit */
|
|
|
|
+ set_current_kprobe(p);
|
|
|
|
+ kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * If we have no pre-handler or it returned 0, we
|
|
|
|
+ * continue with normal processing. If we have a
|
|
|
|
+ * pre-handler and it returned non-zero, it prepped
|
|
|
|
+ * for calling the break_handler below on re-entry,
|
|
|
|
+ * so get out doing nothing more here.
|
|
|
|
+ *
|
|
|
|
+ * pre_handler can hit a breakpoint and can step thru
|
|
|
|
+ * before return, keep PSTATE D-flag enabled until
|
|
|
|
+ * pre_handler return back.
|
|
|
|
+ */
|
|
|
|
+ if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
|
|
+ setup_singlestep(p, regs, kcb, 0);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
|
|
|
|
+ BRK64_OPCODE_KPROBES) && cur_kprobe) {
|
|
|
|
+ /* We probably hit a jprobe. Call its break handler. */
|
|
|
|
+ if (cur_kprobe->break_handler &&
|
|
|
|
+ cur_kprobe->break_handler(cur_kprobe, regs)) {
|
|
|
|
+ setup_singlestep(cur_kprobe, regs, kcb, 0);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ /*
|
|
|
|
+ * The breakpoint instruction was removed right
|
|
|
|
+ * after we hit it. Another cpu has removed
|
|
|
|
+ * either a probepoint or a debugger breakpoint
|
|
|
|
+ * at this address. In either case, no further
|
|
|
|
+ * handling of this interrupt is appropriate.
|
|
|
|
+ * Return back to original instruction, and continue.
|
|
|
|
+ */
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int __kprobes
|
|
|
|
+kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
|
|
|
|
+{
|
|
|
|
+ if ((kcb->ss_ctx.ss_pending)
|
|
|
|
+ && (kcb->ss_ctx.match_addr == addr)) {
|
|
|
|
+ clear_ss_context(kcb); /* clear pending ss */
|
|
|
|
+ return DBG_HOOK_HANDLED;
|
|
|
|
+ }
|
|
|
|
+ /* not ours, kprobes should ignore it */
|
|
|
|
+ return DBG_HOOK_ERROR;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __kprobes
|
|
|
|
+kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
|
|
|
|
+{
|
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
+ int retval;
|
|
|
|
+
|
|
|
|
+ /* return error if this is not our step */
|
|
|
|
+ retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
|
|
|
|
+
|
|
|
|
+ if (retval == DBG_HOOK_HANDLED) {
|
|
|
|
+ kprobes_restore_local_irqflag(kcb, regs);
|
|
|
|
+ kernel_disable_single_step();
|
|
|
|
+
|
|
|
|
+ if (kcb->kprobe_status == KPROBE_REENTER)
|
|
|
|
+ spsr_set_debug_flag(regs, 1);
|
|
|
|
+
|
|
|
|
+ post_kprobe_handler(kcb, regs);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return retval;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __kprobes
|
|
|
|
+kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
|
|
|
|
+{
|
|
|
|
+ kprobe_handler(regs);
|
|
|
|
+ return DBG_HOOK_HANDLED;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
|
|
+{
|
|
|
|
+ struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
+ long stack_ptr = kernel_stack_pointer(regs);
|
|
|
|
+
|
|
|
|
+ kcb->jprobe_saved_regs = *regs;
|
|
|
|
+ /*
|
|
|
|
+ * As Linus pointed out, gcc assumes that the callee
|
|
|
|
+ * owns the argument space and could overwrite it, e.g.
|
|
|
|
+ * tailcall optimization. So, to be absolutely safe
|
|
|
|
+ * we also save and restore enough stack bytes to cover
|
|
|
|
+ * the argument area.
|
|
|
|
+ */
|
|
|
|
+ memcpy(kcb->jprobes_stack, (void *)stack_ptr,
|
|
|
|
+ MIN_STACK_SIZE(stack_ptr));
|
|
|
|
+
|
|
|
|
+ instruction_pointer_set(regs, (unsigned long) jp->entry);
|
|
|
|
+ preempt_disable();
|
|
|
|
+ pause_graph_tracing();
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void __kprobes jprobe_return(void)
|
|
|
|
+{
|
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Jprobe handler return by entering break exception,
|
|
|
|
+ * encoded same as kprobe, but with following conditions
|
|
|
|
+ * -a magic number in x0 to identify from rest of other kprobes.
|
|
|
|
+ * -restore stack addr to original saved pt_regs
|
|
|
|
+ */
|
|
|
|
+ asm volatile ("ldr x0, [%0]\n\t"
|
|
|
|
+ "mov sp, x0\n\t"
|
|
|
|
+ ".globl jprobe_return_break\n\t"
|
|
|
|
+ "jprobe_return_break:\n\t"
|
|
|
|
+ "brk %1\n\t"
|
|
|
|
+ :
|
|
|
|
+ : "r"(&kcb->jprobe_saved_regs.sp),
|
|
|
|
+ "I"(BRK64_ESR_KPROBES)
|
|
|
|
+ : "memory");
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
|
|
+{
|
|
|
|
+ struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
+ long stack_addr = kcb->jprobe_saved_regs.sp;
|
|
|
|
+ long orig_sp = kernel_stack_pointer(regs);
|
|
|
|
+ struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
|
|
+
|
|
|
|
+ if (instruction_pointer(regs) != (u64) jprobe_return_break)
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ if (orig_sp != stack_addr) {
|
|
|
|
+ struct pt_regs *saved_regs =
|
|
|
|
+ (struct pt_regs *)kcb->jprobe_saved_regs.sp;
|
|
|
|
+ pr_err("current sp %lx does not match saved sp %lx\n",
|
|
|
|
+ orig_sp, stack_addr);
|
|
|
|
+ pr_err("Saved registers for jprobe %p\n", jp);
|
|
|
|
+ show_regs(saved_regs);
|
|
|
|
+ pr_err("Current registers\n");
|
|
|
|
+ show_regs(regs);
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+ unpause_graph_tracing();
|
|
|
|
+ *regs = kcb->jprobe_saved_regs;
|
|
|
|
+ memcpy((void *)stack_addr, kcb->jprobes_stack,
|
|
|
|
+ MIN_STACK_SIZE(stack_addr));
|
|
|
|
+ preempt_enable_no_resched();
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+int __init arch_init_kprobes(void)
|
|
|
|
+{
|
|
|
|
+ return 0;
|
|
|
|
+}
|