|
@@ -26,12 +26,92 @@
|
|
|
#include <linux/spinlock.h>
|
|
|
#include <linux/of.h>
|
|
|
#include <linux/of_dma.h>
|
|
|
+#include <linux/of_irq.h>
|
|
|
+#include <linux/of_address.h>
|
|
|
+#include <linux/of_device.h>
|
|
|
+#include <linux/pm_runtime.h>
|
|
|
|
|
|
#include <linux/platform_data/edma.h>
|
|
|
|
|
|
#include "dmaengine.h"
|
|
|
#include "virt-dma.h"
|
|
|
|
|
|
+/* Offsets matching "struct edmacc_param" */
|
|
|
+#define PARM_OPT 0x00
|
|
|
+#define PARM_SRC 0x04
|
|
|
+#define PARM_A_B_CNT 0x08
|
|
|
+#define PARM_DST 0x0c
|
|
|
+#define PARM_SRC_DST_BIDX 0x10
|
|
|
+#define PARM_LINK_BCNTRLD 0x14
|
|
|
+#define PARM_SRC_DST_CIDX 0x18
|
|
|
+#define PARM_CCNT 0x1c
|
|
|
+
|
|
|
+#define PARM_SIZE 0x20
|
|
|
+
|
|
|
+/* Offsets for EDMA CC global channel registers and their shadows */
|
|
|
+#define SH_ER 0x00 /* 64 bits */
|
|
|
+#define SH_ECR 0x08 /* 64 bits */
|
|
|
+#define SH_ESR 0x10 /* 64 bits */
|
|
|
+#define SH_CER 0x18 /* 64 bits */
|
|
|
+#define SH_EER 0x20 /* 64 bits */
|
|
|
+#define SH_EECR 0x28 /* 64 bits */
|
|
|
+#define SH_EESR 0x30 /* 64 bits */
|
|
|
+#define SH_SER 0x38 /* 64 bits */
|
|
|
+#define SH_SECR 0x40 /* 64 bits */
|
|
|
+#define SH_IER 0x50 /* 64 bits */
|
|
|
+#define SH_IECR 0x58 /* 64 bits */
|
|
|
+#define SH_IESR 0x60 /* 64 bits */
|
|
|
+#define SH_IPR 0x68 /* 64 bits */
|
|
|
+#define SH_ICR 0x70 /* 64 bits */
|
|
|
+#define SH_IEVAL 0x78
|
|
|
+#define SH_QER 0x80
|
|
|
+#define SH_QEER 0x84
|
|
|
+#define SH_QEECR 0x88
|
|
|
+#define SH_QEESR 0x8c
|
|
|
+#define SH_QSER 0x90
|
|
|
+#define SH_QSECR 0x94
|
|
|
+#define SH_SIZE 0x200
|
|
|
+
|
|
|
+/* Offsets for EDMA CC global registers */
|
|
|
+#define EDMA_REV 0x0000
|
|
|
+#define EDMA_CCCFG 0x0004
|
|
|
+#define EDMA_QCHMAP 0x0200 /* 8 registers */
|
|
|
+#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
|
|
|
+#define EDMA_QDMAQNUM 0x0260
|
|
|
+#define EDMA_QUETCMAP 0x0280
|
|
|
+#define EDMA_QUEPRI 0x0284
|
|
|
+#define EDMA_EMR 0x0300 /* 64 bits */
|
|
|
+#define EDMA_EMCR 0x0308 /* 64 bits */
|
|
|
+#define EDMA_QEMR 0x0310
|
|
|
+#define EDMA_QEMCR 0x0314
|
|
|
+#define EDMA_CCERR 0x0318
|
|
|
+#define EDMA_CCERRCLR 0x031c
|
|
|
+#define EDMA_EEVAL 0x0320
|
|
|
+#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
|
|
|
+#define EDMA_QRAE 0x0380 /* 4 registers */
|
|
|
+#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
|
|
|
+#define EDMA_QSTAT 0x0600 /* 2 registers */
|
|
|
+#define EDMA_QWMTHRA 0x0620
|
|
|
+#define EDMA_QWMTHRB 0x0624
|
|
|
+#define EDMA_CCSTAT 0x0640
|
|
|
+
|
|
|
+#define EDMA_M 0x1000 /* global channel registers */
|
|
|
+#define EDMA_ECR 0x1008
|
|
|
+#define EDMA_ECRH 0x100C
|
|
|
+#define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
|
|
|
+#define EDMA_PARM 0x4000 /* PaRAM entries */
|
|
|
+
|
|
|
+#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
|
|
|
+
|
|
|
+#define EDMA_DCHMAP 0x0100 /* 64 registers */
|
|
|
+
|
|
|
+/* CCCFG register */
|
|
|
+#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
|
|
|
+#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
|
|
|
+#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
|
|
|
+#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
|
|
|
+#define CHMAP_EXIST BIT(24)
|
|
|
+
|
|
|
/*
|
|
|
* This will go away when the private EDMA API is folded
|
|
|
* into this driver and the platform device(s) are
|
|
@@ -60,6 +140,47 @@
|
|
|
#define EDMA_MAX_SLOTS MAX_NR_SG
|
|
|
#define EDMA_DESCRIPTORS 16
|
|
|
|
|
|
+#define EDMA_MAX_PARAMENTRY 512
|
|
|
+
|
|
|
+#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
|
|
|
+#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
|
|
|
+#define EDMA_CONT_PARAMS_ANY 1001
|
|
|
+#define EDMA_CONT_PARAMS_FIXED_EXACT 1002
|
|
|
+#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
|
|
|
+
|
|
|
+#define EDMA_MAX_CC 2
|
|
|
+
|
|
|
+/* PaRAM slots are laid out like this */
|
|
|
+struct edmacc_param {
|
|
|
+ u32 opt;
|
|
|
+ u32 src;
|
|
|
+ u32 a_b_cnt;
|
|
|
+ u32 dst;
|
|
|
+ u32 src_dst_bidx;
|
|
|
+ u32 link_bcntrld;
|
|
|
+ u32 src_dst_cidx;
|
|
|
+ u32 ccnt;
|
|
|
+} __packed;
|
|
|
+
|
|
|
+/* fields in edmacc_param.opt */
|
|
|
+#define SAM BIT(0)
|
|
|
+#define DAM BIT(1)
|
|
|
+#define SYNCDIM BIT(2)
|
|
|
+#define STATIC BIT(3)
|
|
|
+#define EDMA_FWID (0x07 << 8)
|
|
|
+#define TCCMODE BIT(11)
|
|
|
+#define EDMA_TCC(t) ((t) << 12)
|
|
|
+#define TCINTEN BIT(20)
|
|
|
+#define ITCINTEN BIT(21)
|
|
|
+#define TCCHEN BIT(22)
|
|
|
+#define ITCCHEN BIT(23)
|
|
|
+
|
|
|
+/*ch_status parameter of callback function possible values*/
|
|
|
+#define EDMA_DMA_COMPLETE 1
|
|
|
+#define EDMA_DMA_CC_ERROR 2
|
|
|
+#define EDMA_DMA_TC1_ERROR 3
|
|
|
+#define EDMA_DMA_TC2_ERROR 4
|
|
|
+
|
|
|
struct edma_pset {
|
|
|
u32 len;
|
|
|
dma_addr_t addr;
|
|
@@ -119,14 +240,929 @@ struct edma_chan {
|
|
|
};
|
|
|
|
|
|
struct edma_cc {
|
|
|
- struct edma *cc;
|
|
|
- int ctlr;
|
|
|
+ struct device *dev;
|
|
|
+ struct edma_soc_info *info;
|
|
|
+ void __iomem *base;
|
|
|
+ int id;
|
|
|
+
|
|
|
+ /* eDMA3 resource information */
|
|
|
+ unsigned num_channels;
|
|
|
+ unsigned num_region;
|
|
|
+ unsigned num_slots;
|
|
|
+ unsigned num_tc;
|
|
|
+ enum dma_event_q default_queue;
|
|
|
+
|
|
|
+ bool unused_chan_list_done;
|
|
|
+ /* The edma_inuse bit for each PaRAM slot is clear unless the
|
|
|
+ * channel is in use ... by ARM or DSP, for QDMA, or whatever.
|
|
|
+ */
|
|
|
+ DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
|
|
|
+
|
|
|
+ /* The edma_unused bit for each channel is clear unless
|
|
|
+ * it is not being used on this platform. It uses a bit
|
|
|
+ * of SOC-specific initialization code.
|
|
|
+ */
|
|
|
+ DECLARE_BITMAP(edma_unused, EDMA_CHANS);
|
|
|
+
|
|
|
+ struct dma_interrupt_data {
|
|
|
+ void (*callback)(unsigned channel, unsigned short ch_status,
|
|
|
+ void *data);
|
|
|
+ void *data;
|
|
|
+ } intr_data[EDMA_CHANS];
|
|
|
+
|
|
|
struct dma_device dma_slave;
|
|
|
struct edma_chan slave_chans[EDMA_CHANS];
|
|
|
- int num_slave_chans;
|
|
|
int dummy_slot;
|
|
|
};
|
|
|
|
|
|
+/* dummy param set used to (re)initialize parameter RAM slots */
|
|
|
+static const struct edmacc_param dummy_paramset = {
|
|
|
+ .link_bcntrld = 0xffff,
|
|
|
+ .ccnt = 1,
|
|
|
+};
|
|
|
+
|
|
|
+static const struct of_device_id edma_of_ids[] = {
|
|
|
+ { .compatible = "ti,edma3", },
|
|
|
+ {}
|
|
|
+};
|
|
|
+
|
|
|
+static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
|
|
|
+{
|
|
|
+ return (unsigned int)__raw_readl(ecc->base + offset);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_write(struct edma_cc *ecc, int offset, int val)
|
|
|
+{
|
|
|
+ __raw_writel(val, ecc->base + offset);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
|
|
|
+ unsigned or)
|
|
|
+{
|
|
|
+ unsigned val = edma_read(ecc, offset);
|
|
|
+
|
|
|
+ val &= and;
|
|
|
+ val |= or;
|
|
|
+ edma_write(ecc, offset, val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
|
|
|
+{
|
|
|
+ unsigned val = edma_read(ecc, offset);
|
|
|
+
|
|
|
+ val &= and;
|
|
|
+ edma_write(ecc, offset, val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
|
|
|
+{
|
|
|
+ unsigned val = edma_read(ecc, offset);
|
|
|
+
|
|
|
+ val |= or;
|
|
|
+ edma_write(ecc, offset, val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
|
|
|
+ int i)
|
|
|
+{
|
|
|
+ return edma_read(ecc, offset + (i << 2));
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
|
|
|
+ unsigned val)
|
|
|
+{
|
|
|
+ edma_write(ecc, offset + (i << 2), val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
|
|
|
+ unsigned and, unsigned or)
|
|
|
+{
|
|
|
+ edma_modify(ecc, offset + (i << 2), and, or);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
|
|
|
+ unsigned or)
|
|
|
+{
|
|
|
+ edma_or(ecc, offset + (i << 2), or);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
|
|
|
+ unsigned or)
|
|
|
+{
|
|
|
+ edma_or(ecc, offset + ((i * 2 + j) << 2), or);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
|
|
|
+ int j, unsigned val)
|
|
|
+{
|
|
|
+ edma_write(ecc, offset + ((i * 2 + j) << 2), val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
|
|
|
+{
|
|
|
+ return edma_read(ecc, EDMA_SHADOW0 + offset);
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
|
|
|
+ int offset, int i)
|
|
|
+{
|
|
|
+ return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
|
|
|
+ unsigned val)
|
|
|
+{
|
|
|
+ edma_write(ecc, EDMA_SHADOW0 + offset, val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
|
|
|
+ int i, unsigned val)
|
|
|
+{
|
|
|
+ edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned int edma_parm_read(struct edma_cc *ecc, int offset,
|
|
|
+ int param_no)
|
|
|
+{
|
|
|
+ return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_parm_write(struct edma_cc *ecc, int offset,
|
|
|
+ int param_no, unsigned val)
|
|
|
+{
|
|
|
+ edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_parm_modify(struct edma_cc *ecc, int offset,
|
|
|
+ int param_no, unsigned and, unsigned or)
|
|
|
+{
|
|
|
+ edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_parm_and(struct edma_cc *ecc, int offset, int param_no,
|
|
|
+ unsigned and)
|
|
|
+{
|
|
|
+ edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void edma_parm_or(struct edma_cc *ecc, int offset, int param_no,
|
|
|
+ unsigned or)
|
|
|
+{
|
|
|
+ edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void set_bits(int offset, int len, unsigned long *p)
|
|
|
+{
|
|
|
+ for (; len > 0; len--)
|
|
|
+ set_bit(offset + (len - 1), p);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void clear_bits(int offset, int len, unsigned long *p)
|
|
|
+{
|
|
|
+ for (; len > 0; len--)
|
|
|
+ clear_bit(offset + (len - 1), p);
|
|
|
+}
|
|
|
+
|
|
|
+static void edma_map_dmach_to_queue(struct edma_cc *ecc, unsigned ch_no,
|
|
|
+ enum dma_event_q queue_no)
|
|
|
+{
|
|
|
+ int bit = (ch_no & 0x7) * 4;
|
|
|
+
|
|
|
+ /* default to low priority queue */
|
|
|
+ if (queue_no == EVENTQ_DEFAULT)
|
|
|
+ queue_no = ecc->default_queue;
|
|
|
+
|
|
|
+ queue_no &= 7;
|
|
|
+ edma_modify_array(ecc, EDMA_DMAQNUM, (ch_no >> 3), ~(0x7 << bit),
|
|
|
+ queue_no << bit);
|
|
|
+}
|
|
|
+
|
|
|
+static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
|
|
|
+ int priority)
|
|
|
+{
|
|
|
+ int bit = queue_no * 4;
|
|
|
+
|
|
|
+ edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
|
|
|
+}
|
|
|
+
|
|
|
+static void edma_direct_dmach_to_param_mapping(struct edma_cc *ecc)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for (i = 0; i < ecc->num_channels; i++)
|
|
|
+ edma_write_array(ecc, EDMA_DCHMAP, i, (i << 5));
|
|
|
+}
|
|
|
+
|
|
|
+static int prepare_unused_channel_list(struct device *dev, void *data)
|
|
|
+{
|
|
|
+ struct platform_device *pdev = to_platform_device(dev);
|
|
|
+ struct edma_cc *ecc = data;
|
|
|
+ int i, count;
|
|
|
+ struct of_phandle_args dma_spec;
|
|
|
+
|
|
|
+ if (dev->of_node) {
|
|
|
+ struct platform_device *dma_pdev;
|
|
|
+
|
|
|
+ count = of_property_count_strings(dev->of_node, "dma-names");
|
|
|
+ if (count < 0)
|
|
|
+ return 0;
|
|
|
+ for (i = 0; i < count; i++) {
|
|
|
+ if (of_parse_phandle_with_args(dev->of_node, "dmas",
|
|
|
+ "#dma-cells", i,
|
|
|
+ &dma_spec))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if (!of_match_node(edma_of_ids, dma_spec.np)) {
|
|
|
+ of_node_put(dma_spec.np);
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ dma_pdev = of_find_device_by_node(dma_spec.np);
|
|
|
+ if (&dma_pdev->dev != ecc->dev)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
|
|
|
+ ecc->edma_unused);
|
|
|
+ of_node_put(dma_spec.np);
|
|
|
+ }
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* For non-OF case */
|
|
|
+ for (i = 0; i < pdev->num_resources; i++) {
|
|
|
+ struct resource *res = &pdev->resource[i];
|
|
|
+
|
|
|
+ if ((res->flags & IORESOURCE_DMA) && (int)res->start >= 0) {
|
|
|
+ clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
|
|
|
+ ecc->edma_unused);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void edma_setup_interrupt(struct edma_cc *ecc, unsigned lch,
|
|
|
+ void (*callback)(unsigned channel, u16 ch_status, void *data),
|
|
|
+ void *data)
|
|
|
+{
|
|
|
+ lch = EDMA_CHAN_SLOT(lch);
|
|
|
+
|
|
|
+ if (!callback)
|
|
|
+ edma_shadow0_write_array(ecc, SH_IECR, lch >> 5,
|
|
|
+ BIT(lch & 0x1f));
|
|
|
+
|
|
|
+ ecc->intr_data[lch].callback = callback;
|
|
|
+ ecc->intr_data[lch].data = data;
|
|
|
+
|
|
|
+ if (callback) {
|
|
|
+ edma_shadow0_write_array(ecc, SH_ICR, lch >> 5,
|
|
|
+ BIT(lch & 0x1f));
|
|
|
+ edma_shadow0_write_array(ecc, SH_IESR, lch >> 5,
|
|
|
+ BIT(lch & 0x1f));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * paRAM management functions
|
|
|
+ */
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_write_slot - write parameter RAM data for slot
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @slot: number of parameter RAM slot being modified
|
|
|
+ * @param: data to be written into parameter RAM slot
|
|
|
+ *
|
|
|
+ * Use this to assign all parameters of a transfer at once. This
|
|
|
+ * allows more efficient setup of transfers than issuing multiple
|
|
|
+ * calls to set up those parameters in small pieces, and provides
|
|
|
+ * complete control over all transfer options.
|
|
|
+ */
|
|
|
+static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
|
|
|
+ const struct edmacc_param *param)
|
|
|
+{
|
|
|
+ slot = EDMA_CHAN_SLOT(slot);
|
|
|
+ if (slot >= ecc->num_slots)
|
|
|
+ return;
|
|
|
+ memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_read_slot - read parameter RAM data from slot
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @slot: number of parameter RAM slot being copied
|
|
|
+ * @param: where to store copy of parameter RAM data
|
|
|
+ *
|
|
|
+ * Use this to read data from a parameter RAM slot, perhaps to
|
|
|
+ * save them as a template for later reuse.
|
|
|
+ */
|
|
|
+static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
|
|
|
+ struct edmacc_param *param)
|
|
|
+{
|
|
|
+ slot = EDMA_CHAN_SLOT(slot);
|
|
|
+ if (slot >= ecc->num_slots)
|
|
|
+ return;
|
|
|
+ memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_alloc_slot - allocate DMA parameter RAM
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @slot: specific slot to allocate; negative for "any unused slot"
|
|
|
+ *
|
|
|
+ * This allocates a parameter RAM slot, initializing it to hold a
|
|
|
+ * dummy transfer. Slots allocated using this routine have not been
|
|
|
+ * mapped to a hardware DMA channel, and will normally be used by
|
|
|
+ * linking to them from a slot associated with a DMA channel.
|
|
|
+ *
|
|
|
+ * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
|
|
|
+ * slots may be allocated on behalf of DSP firmware.
|
|
|
+ *
|
|
|
+ * Returns the number of the slot, else negative errno.
|
|
|
+ */
|
|
|
+static int edma_alloc_slot(struct edma_cc *ecc, int slot)
|
|
|
+{
|
|
|
+ if (slot > 0)
|
|
|
+ slot = EDMA_CHAN_SLOT(slot);
|
|
|
+ if (slot < 0) {
|
|
|
+ slot = ecc->num_channels;
|
|
|
+ for (;;) {
|
|
|
+ slot = find_next_zero_bit(ecc->edma_inuse,
|
|
|
+ ecc->num_slots,
|
|
|
+ slot);
|
|
|
+ if (slot == ecc->num_slots)
|
|
|
+ return -ENOMEM;
|
|
|
+ if (!test_and_set_bit(slot, ecc->edma_inuse))
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } else if (slot < ecc->num_channels || slot >= ecc->num_slots) {
|
|
|
+ return -EINVAL;
|
|
|
+ } else if (test_and_set_bit(slot, ecc->edma_inuse)) {
|
|
|
+ return -EBUSY;
|
|
|
+ }
|
|
|
+
|
|
|
+ edma_write_slot(ecc, slot, &dummy_paramset);
|
|
|
+
|
|
|
+ return EDMA_CTLR_CHAN(ecc->id, slot);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_free_slot - deallocate DMA parameter RAM
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @slot: parameter RAM slot returned from edma_alloc_slot()
|
|
|
+ *
|
|
|
+ * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
|
|
|
+ * Callers are responsible for ensuring the slot is inactive, and will
|
|
|
+ * not be activated.
|
|
|
+ */
|
|
|
+static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
|
|
|
+{
|
|
|
+ slot = EDMA_CHAN_SLOT(slot);
|
|
|
+ if (slot < ecc->num_channels || slot >= ecc->num_slots)
|
|
|
+ return;
|
|
|
+
|
|
|
+ edma_write_slot(ecc, slot, &dummy_paramset);
|
|
|
+ clear_bit(slot, ecc->edma_inuse);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_link - link one parameter RAM slot to another
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @from: parameter RAM slot originating the link
|
|
|
+ * @to: parameter RAM slot which is the link target
|
|
|
+ *
|
|
|
+ * The originating slot should not be part of any active DMA transfer.
|
|
|
+ */
|
|
|
+static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
|
|
|
+{
|
|
|
+ from = EDMA_CHAN_SLOT(from);
|
|
|
+ to = EDMA_CHAN_SLOT(to);
|
|
|
+ if (from >= ecc->num_slots || to >= ecc->num_slots)
|
|
|
+ return;
|
|
|
+
|
|
|
+ edma_parm_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
|
|
|
+ PARM_OFFSET(to));
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_get_position - returns the current transfer point
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @slot: parameter RAM slot being examined
|
|
|
+ * @dst: true selects the dest position, false the source
|
|
|
+ *
|
|
|
+ * Returns the position of the current active slot
|
|
|
+ */
|
|
|
+static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
|
|
|
+ bool dst)
|
|
|
+{
|
|
|
+ u32 offs;
|
|
|
+
|
|
|
+ slot = EDMA_CHAN_SLOT(slot);
|
|
|
+ offs = PARM_OFFSET(slot);
|
|
|
+ offs += dst ? PARM_DST : PARM_SRC;
|
|
|
+
|
|
|
+ return edma_read(ecc, offs);
|
|
|
+}
|
|
|
+
|
|
|
+/*-----------------------------------------------------------------------*/
|
|
|
+/**
|
|
|
+ * edma_start - start dma on a channel
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @channel: channel being activated
|
|
|
+ *
|
|
|
+ * Channels with event associations will be triggered by their hardware
|
|
|
+ * events, and channels without such associations will be triggered by
|
|
|
+ * software. (At this writing there is no interface for using software
|
|
|
+ * triggers except with channels that don't support hardware triggers.)
|
|
|
+ *
|
|
|
+ * Returns zero on success, else negative errno.
|
|
|
+ */
|
|
|
+static int edma_start(struct edma_cc *ecc, unsigned channel)
|
|
|
+{
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+
|
|
|
+ if (channel < ecc->num_channels) {
|
|
|
+ int j = channel >> 5;
|
|
|
+ unsigned int mask = BIT(channel & 0x1f);
|
|
|
+
|
|
|
+ /* EDMA channels without event association */
|
|
|
+ if (test_bit(channel, ecc->edma_unused)) {
|
|
|
+ pr_debug("EDMA: ESR%d %08x\n", j,
|
|
|
+ edma_shadow0_read_array(ecc, SH_ESR, j));
|
|
|
+ edma_shadow0_write_array(ecc, SH_ESR, j, mask);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* EDMA channel with event association */
|
|
|
+ pr_debug("EDMA: ER%d %08x\n", j,
|
|
|
+ edma_shadow0_read_array(ecc, SH_ER, j));
|
|
|
+ /* Clear any pending event or error */
|
|
|
+ edma_write_array(ecc, EDMA_ECR, j, mask);
|
|
|
+ edma_write_array(ecc, EDMA_EMCR, j, mask);
|
|
|
+ /* Clear any SER */
|
|
|
+ edma_shadow0_write_array(ecc, SH_SECR, j, mask);
|
|
|
+ edma_shadow0_write_array(ecc, SH_EESR, j, mask);
|
|
|
+ pr_debug("EDMA: EER%d %08x\n", j,
|
|
|
+ edma_shadow0_read_array(ecc, SH_EER, j));
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ return -EINVAL;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_stop - stops dma on the channel passed
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @channel: channel being deactivated
|
|
|
+ *
|
|
|
+ * When @lch is a channel, any active transfer is paused and
|
|
|
+ * all pending hardware events are cleared. The current transfer
|
|
|
+ * may not be resumed, and the channel's Parameter RAM should be
|
|
|
+ * reinitialized before being reused.
|
|
|
+ */
|
|
|
+static void edma_stop(struct edma_cc *ecc, unsigned channel)
|
|
|
+{
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+
|
|
|
+ if (channel < ecc->num_channels) {
|
|
|
+ int j = channel >> 5;
|
|
|
+ unsigned int mask = BIT(channel & 0x1f);
|
|
|
+
|
|
|
+ edma_shadow0_write_array(ecc, SH_EECR, j, mask);
|
|
|
+ edma_shadow0_write_array(ecc, SH_ECR, j, mask);
|
|
|
+ edma_shadow0_write_array(ecc, SH_SECR, j, mask);
|
|
|
+ edma_write_array(ecc, EDMA_EMCR, j, mask);
|
|
|
+
|
|
|
+ /* clear possibly pending completion interrupt */
|
|
|
+ edma_shadow0_write_array(ecc, SH_ICR, j, mask);
|
|
|
+
|
|
|
+ pr_debug("EDMA: EER%d %08x\n", j,
|
|
|
+ edma_shadow0_read_array(ecc, SH_EER, j));
|
|
|
+
|
|
|
+ /* REVISIT: consider guarding against inappropriate event
|
|
|
+ * chaining by overwriting with dummy_paramset.
|
|
|
+ */
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_pause - pause dma on a channel
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @channel: on which edma_start() has been called
|
|
|
+ *
|
|
|
+ * This temporarily disables EDMA hardware events on the specified channel,
|
|
|
+ * preventing them from triggering new transfers on its behalf
|
|
|
+ */
|
|
|
+static void edma_pause(struct edma_cc *ecc, unsigned channel)
|
|
|
+{
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+
|
|
|
+ if (channel < ecc->num_channels) {
|
|
|
+ unsigned int mask = BIT(channel & 0x1f);
|
|
|
+
|
|
|
+ edma_shadow0_write_array(ecc, SH_EECR, channel >> 5, mask);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_resume - resumes dma on a paused channel
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @channel: on which edma_pause() has been called
|
|
|
+ *
|
|
|
+ * This re-enables EDMA hardware events on the specified channel.
|
|
|
+ */
|
|
|
+static void edma_resume(struct edma_cc *ecc, unsigned channel)
|
|
|
+{
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+
|
|
|
+ if (channel < ecc->num_channels) {
|
|
|
+ unsigned int mask = BIT(channel & 0x1f);
|
|
|
+
|
|
|
+ edma_shadow0_write_array(ecc, SH_EESR, channel >> 5, mask);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static int edma_trigger_channel(struct edma_cc *ecc, unsigned channel)
|
|
|
+{
|
|
|
+ unsigned int mask;
|
|
|
+
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+ mask = BIT(channel & 0x1f);
|
|
|
+
|
|
|
+ edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
|
|
|
+
|
|
|
+ pr_debug("EDMA: ESR%d %08x\n", (channel >> 5),
|
|
|
+ edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ *
|
|
|
+ * It cleans ParamEntry qand bring back EDMA to initial state if media has
|
|
|
+ * been removed before EDMA has finished.It is usedful for removable media.
|
|
|
+ * Arguments:
|
|
|
+ * ch_no - channel no
|
|
|
+ *
|
|
|
+ * Return: zero on success, or corresponding error no on failure
|
|
|
+ *
|
|
|
+ * FIXME this should not be needed ... edma_stop() should suffice.
|
|
|
+ *
|
|
|
+ *****************************************************************************/
|
|
|
+
|
|
|
+static void edma_clean_channel(struct edma_cc *ecc, unsigned channel)
|
|
|
+{
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+
|
|
|
+ if (channel < ecc->num_channels) {
|
|
|
+ int j = (channel >> 5);
|
|
|
+ unsigned int mask = BIT(channel & 0x1f);
|
|
|
+
|
|
|
+ pr_debug("EDMA: EMR%d %08x\n", j,
|
|
|
+ edma_read_array(ecc, EDMA_EMR, j));
|
|
|
+ edma_shadow0_write_array(ecc, SH_ECR, j, mask);
|
|
|
+ /* Clear the corresponding EMR bits */
|
|
|
+ edma_write_array(ecc, EDMA_EMCR, j, mask);
|
|
|
+ /* Clear any SER */
|
|
|
+ edma_shadow0_write_array(ecc, SH_SECR, j, mask);
|
|
|
+ edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_alloc_channel - allocate DMA channel and paired parameter RAM
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @channel: specific channel to allocate; negative for "any unmapped channel"
|
|
|
+ * @callback: optional; to be issued on DMA completion or errors
|
|
|
+ * @data: passed to callback
|
|
|
+ * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
|
|
|
+ * Controller (TC) executes requests using this channel. Use
|
|
|
+ * EVENTQ_DEFAULT unless you really need a high priority queue.
|
|
|
+ *
|
|
|
+ * This allocates a DMA channel and its associated parameter RAM slot.
|
|
|
+ * The parameter RAM is initialized to hold a dummy transfer.
|
|
|
+ *
|
|
|
+ * Normal use is to pass a specific channel number as @channel, to make
|
|
|
+ * use of hardware events mapped to that channel. When the channel will
|
|
|
+ * be used only for software triggering or event chaining, channels not
|
|
|
+ * mapped to hardware events (or mapped to unused events) are preferable.
|
|
|
+ *
|
|
|
+ * DMA transfers start from a channel using edma_start(), or by
|
|
|
+ * chaining. When the transfer described in that channel's parameter RAM
|
|
|
+ * slot completes, that slot's data may be reloaded through a link.
|
|
|
+ *
|
|
|
+ * DMA errors are only reported to the @callback associated with the
|
|
|
+ * channel driving that transfer, but transfer completion callbacks can
|
|
|
+ * be sent to another channel under control of the TCC field in
|
|
|
+ * the option word of the transfer's parameter RAM set. Drivers must not
|
|
|
+ * use DMA transfer completion callbacks for channels they did not allocate.
|
|
|
+ * (The same applies to TCC codes used in transfer chaining.)
|
|
|
+ *
|
|
|
+ * Returns the number of the channel, else negative errno.
|
|
|
+ */
|
|
|
+static int edma_alloc_channel(struct edma_cc *ecc, int channel,
|
|
|
+ void (*callback)(unsigned channel, u16 ch_status, void *data),
|
|
|
+ void *data,
|
|
|
+ enum dma_event_q eventq_no)
|
|
|
+{
|
|
|
+ unsigned done = 0;
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
+ if (!ecc->unused_chan_list_done) {
|
|
|
+ /*
|
|
|
+ * Scan all the platform devices to find out the EDMA channels
|
|
|
+ * used and clear them in the unused list, making the rest
|
|
|
+ * available for ARM usage.
|
|
|
+ */
|
|
|
+ ret = bus_for_each_dev(&platform_bus_type, NULL, ecc,
|
|
|
+ prepare_unused_channel_list);
|
|
|
+ if (ret < 0)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ ecc->unused_chan_list_done = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (channel >= 0) {
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n",
|
|
|
+ __func__, ecc->id, EDMA_CTLR(channel));
|
|
|
+ return -EINVAL;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (channel < 0) {
|
|
|
+ channel = 0;
|
|
|
+ for (;;) {
|
|
|
+ channel = find_next_bit(ecc->edma_unused,
|
|
|
+ ecc->num_channels, channel);
|
|
|
+ if (channel == ecc->num_channels)
|
|
|
+ break;
|
|
|
+ if (!test_and_set_bit(channel, ecc->edma_inuse)) {
|
|
|
+ done = 1;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ channel++;
|
|
|
+ }
|
|
|
+ if (!done)
|
|
|
+ return -ENOMEM;
|
|
|
+ } else if (channel >= ecc->num_channels) {
|
|
|
+ return -EINVAL;
|
|
|
+ } else if (test_and_set_bit(channel, ecc->edma_inuse)) {
|
|
|
+ return -EBUSY;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* ensure access through shadow region 0 */
|
|
|
+ edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
|
|
|
+
|
|
|
+ /* ensure no events are pending */
|
|
|
+ edma_stop(ecc, EDMA_CTLR_CHAN(ecc->id, channel));
|
|
|
+ edma_write_slot(ecc, channel, &dummy_paramset);
|
|
|
+
|
|
|
+ if (callback)
|
|
|
+ edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, channel),
|
|
|
+ callback, data);
|
|
|
+
|
|
|
+ edma_map_dmach_to_queue(ecc, channel, eventq_no);
|
|
|
+
|
|
|
+ return EDMA_CTLR_CHAN(ecc->id, channel);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * edma_free_channel - deallocate DMA channel
|
|
|
+ * @ecc: pointer to edma_cc struct
|
|
|
+ * @channel: dma channel returned from edma_alloc_channel()
|
|
|
+ *
|
|
|
+ * This deallocates the DMA channel and associated parameter RAM slot
|
|
|
+ * allocated by edma_alloc_channel().
|
|
|
+ *
|
|
|
+ * Callers are responsible for ensuring the channel is inactive, and
|
|
|
+ * will not be reactivated by linking, chaining, or software calls to
|
|
|
+ * edma_start().
|
|
|
+ */
|
|
|
+static void edma_free_channel(struct edma_cc *ecc, unsigned channel)
|
|
|
+{
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+
|
|
|
+ if (channel >= ecc->num_channels)
|
|
|
+ return;
|
|
|
+
|
|
|
+ edma_setup_interrupt(ecc, channel, NULL, NULL);
|
|
|
+ /* REVISIT should probably take out of shadow region 0 */
|
|
|
+
|
|
|
+ memcpy_toio(ecc->base + PARM_OFFSET(channel), &dummy_paramset,
|
|
|
+ PARM_SIZE);
|
|
|
+ clear_bit(channel, ecc->edma_inuse);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * edma_assign_channel_eventq - move given channel to desired eventq
|
|
|
+ * Arguments:
|
|
|
+ * channel - channel number
|
|
|
+ * eventq_no - queue to move the channel
|
|
|
+ *
|
|
|
+ * Can be used to move a channel to a selected event queue.
|
|
|
+ */
|
|
|
+static void edma_assign_channel_eventq(struct edma_cc *ecc, unsigned channel,
|
|
|
+ enum dma_event_q eventq_no)
|
|
|
+{
|
|
|
+ if (ecc->id != EDMA_CTLR(channel)) {
|
|
|
+ dev_err(ecc->dev, "%s: ID mismatch for eDMA%d: %d\n", __func__,
|
|
|
+ ecc->id, EDMA_CTLR(channel));
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ channel = EDMA_CHAN_SLOT(channel);
|
|
|
+
|
|
|
+ if (channel >= ecc->num_channels)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* default to low priority queue */
|
|
|
+ if (eventq_no == EVENTQ_DEFAULT)
|
|
|
+ eventq_no = ecc->default_queue;
|
|
|
+ if (eventq_no >= ecc->num_tc)
|
|
|
+ return;
|
|
|
+
|
|
|
+ edma_map_dmach_to_queue(ecc, channel, eventq_no);
|
|
|
+}
|
|
|
+
|
|
|
+static irqreturn_t dma_irq_handler(int irq, void *data)
|
|
|
+{
|
|
|
+ struct edma_cc *ecc = data;
|
|
|
+ int ctlr;
|
|
|
+ u32 sh_ier;
|
|
|
+ u32 sh_ipr;
|
|
|
+ u32 bank;
|
|
|
+
|
|
|
+ ctlr = ecc->id;
|
|
|
+ if (ctlr < 0)
|
|
|
+ return IRQ_NONE;
|
|
|
+
|
|
|
+ dev_dbg(ecc->dev, "dma_irq_handler\n");
|
|
|
+
|
|
|
+ sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
|
|
|
+ if (!sh_ipr) {
|
|
|
+ sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
|
|
|
+ if (!sh_ipr)
|
|
|
+ return IRQ_NONE;
|
|
|
+ sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
|
|
|
+ bank = 1;
|
|
|
+ } else {
|
|
|
+ sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
|
|
|
+ bank = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ do {
|
|
|
+ u32 slot;
|
|
|
+ u32 channel;
|
|
|
+
|
|
|
+ dev_dbg(ecc->dev, "IPR%d %08x\n", bank, sh_ipr);
|
|
|
+
|
|
|
+ slot = __ffs(sh_ipr);
|
|
|
+ sh_ipr &= ~(BIT(slot));
|
|
|
+
|
|
|
+ if (sh_ier & BIT(slot)) {
|
|
|
+ channel = (bank << 5) | slot;
|
|
|
+ /* Clear the corresponding IPR bits */
|
|
|
+ edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
|
|
|
+ if (ecc->intr_data[channel].callback)
|
|
|
+ ecc->intr_data[channel].callback(
|
|
|
+ EDMA_CTLR_CHAN(ctlr, channel),
|
|
|
+ EDMA_DMA_COMPLETE,
|
|
|
+ ecc->intr_data[channel].data);
|
|
|
+ }
|
|
|
+ } while (sh_ipr);
|
|
|
+
|
|
|
+ edma_shadow0_write(ecc, SH_IEVAL, 1);
|
|
|
+ return IRQ_HANDLED;
|
|
|
+}
|
|
|
+
|
|
|
+/******************************************************************************
|
|
|
+ *
|
|
|
+ * DMA error interrupt handler
|
|
|
+ *
|
|
|
+ *****************************************************************************/
|
|
|
+static irqreturn_t dma_ccerr_handler(int irq, void *data)
|
|
|
+{
|
|
|
+ struct edma_cc *ecc = data;
|
|
|
+ int i;
|
|
|
+ int ctlr;
|
|
|
+ unsigned int cnt = 0;
|
|
|
+
|
|
|
+ ctlr = ecc->id;
|
|
|
+ if (ctlr < 0)
|
|
|
+ return IRQ_NONE;
|
|
|
+
|
|
|
+ dev_dbg(ecc->dev, "dma_ccerr_handler\n");
|
|
|
+
|
|
|
+ if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
|
|
|
+ (edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
|
|
|
+ (edma_read(ecc, EDMA_QEMR) == 0) &&
|
|
|
+ (edma_read(ecc, EDMA_CCERR) == 0))
|
|
|
+ return IRQ_NONE;
|
|
|
+
|
|
|
+ while (1) {
|
|
|
+ int j = -1;
|
|
|
+
|
|
|
+ if (edma_read_array(ecc, EDMA_EMR, 0))
|
|
|
+ j = 0;
|
|
|
+ else if (edma_read_array(ecc, EDMA_EMR, 1))
|
|
|
+ j = 1;
|
|
|
+ if (j >= 0) {
|
|
|
+ dev_dbg(ecc->dev, "EMR%d %08x\n", j,
|
|
|
+ edma_read_array(ecc, EDMA_EMR, j));
|
|
|
+ for (i = 0; i < 32; i++) {
|
|
|
+ int k = (j << 5) + i;
|
|
|
+
|
|
|
+ if (edma_read_array(ecc, EDMA_EMR, j) &
|
|
|
+ BIT(i)) {
|
|
|
+ /* Clear the corresponding EMR bits */
|
|
|
+ edma_write_array(ecc, EDMA_EMCR, j,
|
|
|
+ BIT(i));
|
|
|
+ /* Clear any SER */
|
|
|
+ edma_shadow0_write_array(ecc, SH_SECR,
|
|
|
+ j, BIT(i));
|
|
|
+ if (ecc->intr_data[k].callback) {
|
|
|
+ ecc->intr_data[k].callback(
|
|
|
+ EDMA_CTLR_CHAN(ctlr, k),
|
|
|
+ EDMA_DMA_CC_ERROR,
|
|
|
+ ecc->intr_data[k].data);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else if (edma_read(ecc, EDMA_QEMR)) {
|
|
|
+ dev_dbg(ecc->dev, "QEMR %02x\n",
|
|
|
+ edma_read(ecc, EDMA_QEMR));
|
|
|
+ for (i = 0; i < 8; i++) {
|
|
|
+ if (edma_read(ecc, EDMA_QEMR) & BIT(i)) {
|
|
|
+ /* Clear the corresponding IPR bits */
|
|
|
+ edma_write(ecc, EDMA_QEMCR, BIT(i));
|
|
|
+ edma_shadow0_write(ecc, SH_QSECR,
|
|
|
+ BIT(i));
|
|
|
+
|
|
|
+ /* NOTE: not reported!! */
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else if (edma_read(ecc, EDMA_CCERR)) {
|
|
|
+ dev_dbg(ecc->dev, "CCERR %08x\n",
|
|
|
+ edma_read(ecc, EDMA_CCERR));
|
|
|
+ /* FIXME: CCERR.BIT(16) ignored! much better
|
|
|
+ * to just write CCERRCLR with CCERR value...
|
|
|
+ */
|
|
|
+ for (i = 0; i < 8; i++) {
|
|
|
+ if (edma_read(ecc, EDMA_CCERR) & BIT(i)) {
|
|
|
+ /* Clear the corresponding IPR bits */
|
|
|
+ edma_write(ecc, EDMA_CCERRCLR, BIT(i));
|
|
|
+
|
|
|
+ /* NOTE: not reported!! */
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if ((edma_read_array(ecc, EDMA_EMR, 0) == 0) &&
|
|
|
+ (edma_read_array(ecc, EDMA_EMR, 1) == 0) &&
|
|
|
+ (edma_read(ecc, EDMA_QEMR) == 0) &&
|
|
|
+ (edma_read(ecc, EDMA_CCERR) == 0))
|
|
|
+ break;
|
|
|
+ cnt++;
|
|
|
+ if (cnt > 10)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ edma_write(ecc, EDMA_EEVAL, 1);
|
|
|
+ return IRQ_HANDLED;
|
|
|
+}
|
|
|
+
|
|
|
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
|
|
|
{
|
|
|
return container_of(d, struct edma_cc, dma_slave);
|
|
@@ -137,8 +1173,7 @@ static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
|
|
|
return container_of(c, struct edma_chan, vchan.chan);
|
|
|
}
|
|
|
|
|
|
-static inline struct edma_desc
|
|
|
-*to_edma_desc(struct dma_async_tx_descriptor *tx)
|
|
|
+static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
|
|
|
{
|
|
|
return container_of(tx, struct edma_desc, vdesc.tx);
|
|
|
}
|
|
@@ -151,7 +1186,7 @@ static void edma_desc_free(struct virt_dma_desc *vdesc)
|
|
|
/* Dispatch a queued descriptor to the controller (caller holds lock) */
|
|
|
static void edma_execute(struct edma_chan *echan)
|
|
|
{
|
|
|
- struct edma *cc = echan->ecc->cc;
|
|
|
+ struct edma_cc *ecc = echan->ecc;
|
|
|
struct virt_dma_desc *vdesc;
|
|
|
struct edma_desc *edesc;
|
|
|
struct device *dev = echan->vchan.chan.device->dev;
|
|
@@ -176,7 +1211,7 @@ static void edma_execute(struct edma_chan *echan)
|
|
|
/* Write descriptor PaRAM set(s) */
|
|
|
for (i = 0; i < nslots; i++) {
|
|
|
j = i + edesc->processed;
|
|
|
- edma_write_slot(cc, echan->slot[i], &edesc->pset[j].param);
|
|
|
+ edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
|
|
|
edesc->sg_len += edesc->pset[j].len;
|
|
|
dev_vdbg(echan->vchan.chan.device->dev,
|
|
|
"\n pset[%d]:\n"
|
|
@@ -201,7 +1236,7 @@ static void edma_execute(struct edma_chan *echan)
|
|
|
edesc->pset[j].param.link_bcntrld);
|
|
|
/* Link to the previous slot if not the last set */
|
|
|
if (i != (nslots - 1))
|
|
|
- edma_link(cc, echan->slot[i], echan->slot[i+1]);
|
|
|
+ edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
|
|
|
}
|
|
|
|
|
|
edesc->processed += nslots;
|
|
@@ -213,9 +1248,9 @@ static void edma_execute(struct edma_chan *echan)
|
|
|
*/
|
|
|
if (edesc->processed == edesc->pset_nr) {
|
|
|
if (edesc->cyclic)
|
|
|
- edma_link(cc, echan->slot[nslots-1], echan->slot[1]);
|
|
|
+ edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
|
|
|
else
|
|
|
- edma_link(cc, echan->slot[nslots-1],
|
|
|
+ edma_link(ecc, echan->slot[nslots - 1],
|
|
|
echan->ecc->dummy_slot);
|
|
|
}
|
|
|
|
|
@@ -226,19 +1261,19 @@ static void edma_execute(struct edma_chan *echan)
|
|
|
* transfers of MAX_NR_SG
|
|
|
*/
|
|
|
dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
|
|
|
- edma_clean_channel(cc, echan->ch_num);
|
|
|
- edma_stop(cc, echan->ch_num);
|
|
|
- edma_start(cc, echan->ch_num);
|
|
|
- edma_trigger_channel(cc, echan->ch_num);
|
|
|
+ edma_clean_channel(ecc, echan->ch_num);
|
|
|
+ edma_stop(ecc, echan->ch_num);
|
|
|
+ edma_start(ecc, echan->ch_num);
|
|
|
+ edma_trigger_channel(ecc, echan->ch_num);
|
|
|
echan->missed = 0;
|
|
|
} else if (edesc->processed <= MAX_NR_SG) {
|
|
|
dev_dbg(dev, "first transfer starting on channel %d\n",
|
|
|
echan->ch_num);
|
|
|
- edma_start(cc, echan->ch_num);
|
|
|
+ edma_start(ecc, echan->ch_num);
|
|
|
} else {
|
|
|
dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
|
|
|
echan->ch_num, edesc->processed);
|
|
|
- edma_resume(cc, echan->ch_num);
|
|
|
+ edma_resume(ecc, echan->ch_num);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -256,11 +1291,10 @@ static int edma_terminate_all(struct dma_chan *chan)
|
|
|
* echan->edesc is NULL and exit.)
|
|
|
*/
|
|
|
if (echan->edesc) {
|
|
|
- edma_stop(echan->ecc->cc, echan->ch_num);
|
|
|
+ edma_stop(echan->ecc, echan->ch_num);
|
|
|
/* Move the cyclic channel back to default queue */
|
|
|
if (echan->edesc->cyclic)
|
|
|
- edma_assign_channel_eventq(echan->ecc->cc,
|
|
|
- echan->ch_num,
|
|
|
+ edma_assign_channel_eventq(echan->ecc, echan->ch_num,
|
|
|
EVENTQ_DEFAULT);
|
|
|
/*
|
|
|
* free the running request descriptor
|
|
@@ -298,7 +1332,7 @@ static int edma_dma_pause(struct dma_chan *chan)
|
|
|
if (!echan->edesc)
|
|
|
return -EINVAL;
|
|
|
|
|
|
- edma_pause(echan->ecc->cc, echan->ch_num);
|
|
|
+ edma_pause(echan->ecc, echan->ch_num);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -306,7 +1340,7 @@ static int edma_dma_resume(struct dma_chan *chan)
|
|
|
{
|
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
|
|
|
- edma_resume(echan->ecc->cc, echan->ch_num);
|
|
|
+ edma_resume(echan->ecc, echan->ch_num);
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -322,9 +1356,10 @@ static int edma_dma_resume(struct dma_chan *chan)
|
|
|
* @direction: Direction of the transfer
|
|
|
*/
|
|
|
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
|
|
|
- dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
|
|
|
- enum dma_slave_buswidth dev_width, unsigned int dma_length,
|
|
|
- enum dma_transfer_direction direction)
|
|
|
+ dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
|
|
|
+ enum dma_slave_buswidth dev_width,
|
|
|
+ unsigned int dma_length,
|
|
|
+ enum dma_transfer_direction direction)
|
|
|
{
|
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
struct device *dev = chan->device->dev;
|
|
@@ -470,8 +1505,8 @@ static struct dma_async_tx_descriptor *edma_prep_slave_sg(
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
|
- edesc = kzalloc(sizeof(*edesc) + sg_len *
|
|
|
- sizeof(edesc->pset[0]), GFP_ATOMIC);
|
|
|
+ edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
|
|
|
+ GFP_ATOMIC);
|
|
|
if (!edesc) {
|
|
|
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
|
|
|
return NULL;
|
|
@@ -488,7 +1523,7 @@ static struct dma_async_tx_descriptor *edma_prep_slave_sg(
|
|
|
for (i = 0; i < nslots; i++) {
|
|
|
if (echan->slot[i] < 0) {
|
|
|
echan->slot[i] =
|
|
|
- edma_alloc_slot(echan->ecc->cc, EDMA_SLOT_ANY);
|
|
|
+ edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
|
|
|
if (echan->slot[i] < 0) {
|
|
|
kfree(edesc);
|
|
|
dev_err(dev, "%s: Failed to allocate slot\n",
|
|
@@ -623,8 +1658,8 @@ static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
|
|
|
if (nslots > MAX_NR_SG)
|
|
|
return NULL;
|
|
|
|
|
|
- edesc = kzalloc(sizeof(*edesc) + nslots *
|
|
|
- sizeof(edesc->pset[0]), GFP_ATOMIC);
|
|
|
+ edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
|
|
|
+ GFP_ATOMIC);
|
|
|
if (!edesc) {
|
|
|
dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
|
|
|
return NULL;
|
|
@@ -643,7 +1678,7 @@ static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
|
|
|
/* Allocate a PaRAM slot, if needed */
|
|
|
if (echan->slot[i] < 0) {
|
|
|
echan->slot[i] =
|
|
|
- edma_alloc_slot(echan->ecc->cc, EDMA_SLOT_ANY);
|
|
|
+ edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
|
|
|
if (echan->slot[i] < 0) {
|
|
|
kfree(edesc);
|
|
|
dev_err(dev, "%s: Failed to allocate slot\n",
|
|
@@ -704,7 +1739,7 @@ static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
|
|
|
}
|
|
|
|
|
|
/* Place the cyclic channel to highest priority queue */
|
|
|
- edma_assign_channel_eventq(echan->ecc->cc, echan->ch_num, EVENTQ_0);
|
|
|
+ edma_assign_channel_eventq(echan->ecc, echan->ch_num, EVENTQ_0);
|
|
|
|
|
|
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
|
|
|
}
|
|
@@ -712,7 +1747,7 @@ static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
|
|
|
static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
|
|
|
{
|
|
|
struct edma_chan *echan = data;
|
|
|
- struct edma *cc = echan->ecc->cc;
|
|
|
+ struct edma_cc *ecc = echan->ecc;
|
|
|
struct device *dev = echan->vchan.chan.device->dev;
|
|
|
struct edma_desc *edesc;
|
|
|
struct edmacc_param p;
|
|
@@ -727,15 +1762,19 @@ static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
|
|
|
vchan_cyclic_callback(&edesc->vdesc);
|
|
|
goto out;
|
|
|
} else if (edesc->processed == edesc->pset_nr) {
|
|
|
- dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
|
|
|
+ dev_dbg(dev,
|
|
|
+ "Transfer completed on channel %d\n",
|
|
|
+ ch_num);
|
|
|
edesc->residue = 0;
|
|
|
- edma_stop(cc, echan->ch_num);
|
|
|
+ edma_stop(ecc, echan->ch_num);
|
|
|
vchan_cookie_complete(&edesc->vdesc);
|
|
|
echan->edesc = NULL;
|
|
|
} else {
|
|
|
- dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
|
|
|
+ dev_dbg(dev,
|
|
|
+ "Sub transfer completed on channel %d\n",
|
|
|
+ ch_num);
|
|
|
|
|
|
- edma_pause(cc, echan->ch_num);
|
|
|
+ edma_pause(ecc, echan->ch_num);
|
|
|
|
|
|
/* Update statistics for tx_status */
|
|
|
edesc->residue -= edesc->sg_len;
|
|
@@ -746,7 +1785,7 @@ static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
|
|
|
}
|
|
|
break;
|
|
|
case EDMA_DMA_CC_ERROR:
|
|
|
- edma_read_slot(cc, echan->slot[0], &p);
|
|
|
+ edma_read_slot(ecc, echan->slot[0], &p);
|
|
|
|
|
|
/*
|
|
|
* Issue later based on missed flag which will be sure
|
|
@@ -761,18 +1800,18 @@ static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
|
|
|
* slot. So we avoid doing so and set the missed flag.
|
|
|
*/
|
|
|
if (p.a_b_cnt == 0 && p.ccnt == 0) {
|
|
|
- dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
|
|
|
+ dev_dbg(dev, "Error on null slot, setting miss\n");
|
|
|
echan->missed = 1;
|
|
|
} else {
|
|
|
/*
|
|
|
* The slot is already programmed but the event got
|
|
|
* missed, so its safe to issue it here.
|
|
|
*/
|
|
|
- dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
|
|
|
- edma_clean_channel(cc, echan->ch_num);
|
|
|
- edma_stop(cc, echan->ch_num);
|
|
|
- edma_start(cc, echan->ch_num);
|
|
|
- edma_trigger_channel(cc, echan->ch_num);
|
|
|
+ dev_dbg(dev, "Missed event, TRIGGERING\n");
|
|
|
+ edma_clean_channel(ecc, echan->ch_num);
|
|
|
+ edma_stop(ecc, echan->ch_num);
|
|
|
+ edma_start(ecc, echan->ch_num);
|
|
|
+ edma_trigger_channel(ecc, echan->ch_num);
|
|
|
}
|
|
|
break;
|
|
|
default:
|
|
@@ -791,7 +1830,7 @@ static int edma_alloc_chan_resources(struct dma_chan *chan)
|
|
|
int a_ch_num;
|
|
|
LIST_HEAD(descs);
|
|
|
|
|
|
- a_ch_num = edma_alloc_channel(echan->ecc->cc, echan->ch_num,
|
|
|
+ a_ch_num = edma_alloc_channel(echan->ecc, echan->ch_num,
|
|
|
edma_callback, echan, EVENTQ_DEFAULT);
|
|
|
|
|
|
if (a_ch_num < 0) {
|
|
@@ -816,7 +1855,7 @@ static int edma_alloc_chan_resources(struct dma_chan *chan)
|
|
|
return 0;
|
|
|
|
|
|
err_wrong_chan:
|
|
|
- edma_free_channel(echan->ecc->cc, a_ch_num);
|
|
|
+ edma_free_channel(echan->ecc, a_ch_num);
|
|
|
err_no_chan:
|
|
|
return ret;
|
|
|
}
|
|
@@ -829,21 +1868,21 @@ static void edma_free_chan_resources(struct dma_chan *chan)
|
|
|
int i;
|
|
|
|
|
|
/* Terminate transfers */
|
|
|
- edma_stop(echan->ecc->cc, echan->ch_num);
|
|
|
+ edma_stop(echan->ecc, echan->ch_num);
|
|
|
|
|
|
vchan_free_chan_resources(&echan->vchan);
|
|
|
|
|
|
/* Free EDMA PaRAM slots */
|
|
|
for (i = 1; i < EDMA_MAX_SLOTS; i++) {
|
|
|
if (echan->slot[i] >= 0) {
|
|
|
- edma_free_slot(echan->ecc->cc, echan->slot[i]);
|
|
|
+ edma_free_slot(echan->ecc, echan->slot[i]);
|
|
|
echan->slot[i] = -1;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* Free EDMA channel */
|
|
|
if (echan->alloced) {
|
|
|
- edma_free_channel(echan->ecc->cc, echan->ch_num);
|
|
|
+ edma_free_channel(echan->ecc, echan->ch_num);
|
|
|
echan->alloced = false;
|
|
|
}
|
|
|
|
|
@@ -873,8 +1912,7 @@ static u32 edma_residue(struct edma_desc *edesc)
|
|
|
* We always read the dst/src position from the first RamPar
|
|
|
* pset. That's the one which is active now.
|
|
|
*/
|
|
|
- pos = edma_get_position(edesc->echan->ecc->cc, edesc->echan->slot[0],
|
|
|
- dst);
|
|
|
+ pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
|
|
|
|
|
|
/*
|
|
|
* Cyclic is simple. Just subtract pset[0].addr from pos.
|
|
@@ -935,15 +1973,14 @@ static enum dma_status edma_tx_status(struct dma_chan *chan,
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-static void __init edma_chan_init(struct edma_cc *ecc,
|
|
|
- struct dma_device *dma,
|
|
|
+static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma,
|
|
|
struct edma_chan *echans)
|
|
|
{
|
|
|
int i, j;
|
|
|
|
|
|
for (i = 0; i < EDMA_CHANS; i++) {
|
|
|
struct edma_chan *echan = &echans[i];
|
|
|
- echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
|
|
|
+ echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
|
|
|
echan->ecc = ecc;
|
|
|
echan->vchan.desc_free = edma_desc_free;
|
|
|
|
|
@@ -991,14 +2028,189 @@ static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
|
|
|
INIT_LIST_HEAD(&dma->channels);
|
|
|
}
|
|
|
|
|
|
+static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
|
|
|
+ struct edma_cc *ecc)
|
|
|
+{
|
|
|
+ int i;
|
|
|
+ u32 value, cccfg;
|
|
|
+ s8 (*queue_priority_map)[2];
|
|
|
+
|
|
|
+ /* Decode the eDMA3 configuration from CCCFG register */
|
|
|
+ cccfg = edma_read(ecc, EDMA_CCCFG);
|
|
|
+
|
|
|
+ value = GET_NUM_REGN(cccfg);
|
|
|
+ ecc->num_region = BIT(value);
|
|
|
+
|
|
|
+ value = GET_NUM_DMACH(cccfg);
|
|
|
+ ecc->num_channels = BIT(value + 1);
|
|
|
+
|
|
|
+ value = GET_NUM_PAENTRY(cccfg);
|
|
|
+ ecc->num_slots = BIT(value + 4);
|
|
|
+
|
|
|
+ value = GET_NUM_EVQUE(cccfg);
|
|
|
+ ecc->num_tc = value + 1;
|
|
|
+
|
|
|
+ dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
|
|
|
+ dev_dbg(dev, "num_region: %u\n", ecc->num_region);
|
|
|
+ dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
|
|
|
+ dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
|
|
|
+ dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
|
|
|
+
|
|
|
+ /* Nothing need to be done if queue priority is provided */
|
|
|
+ if (pdata->queue_priority_mapping)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Configure TC/queue priority as follows:
|
|
|
+ * Q0 - priority 0
|
|
|
+ * Q1 - priority 1
|
|
|
+ * Q2 - priority 2
|
|
|
+ * ...
|
|
|
+ * The meaning of priority numbers: 0 highest priority, 7 lowest
|
|
|
+ * priority. So Q0 is the highest priority queue and the last queue has
|
|
|
+ * the lowest priority.
|
|
|
+ */
|
|
|
+ queue_priority_map = devm_kzalloc(dev, (ecc->num_tc + 1) * sizeof(s8),
|
|
|
+ GFP_KERNEL);
|
|
|
+ if (!queue_priority_map)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ for (i = 0; i < ecc->num_tc; i++) {
|
|
|
+ queue_priority_map[i][0] = i;
|
|
|
+ queue_priority_map[i][1] = i;
|
|
|
+ }
|
|
|
+ queue_priority_map[i][0] = -1;
|
|
|
+ queue_priority_map[i][1] = -1;
|
|
|
+
|
|
|
+ pdata->queue_priority_mapping = queue_priority_map;
|
|
|
+ /* Default queue has the lowest priority */
|
|
|
+ pdata->default_queue = i - 1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+#if IS_ENABLED(CONFIG_OF)
|
|
|
+static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
|
|
|
+ size_t sz)
|
|
|
+{
|
|
|
+ const char pname[] = "ti,edma-xbar-event-map";
|
|
|
+ struct resource res;
|
|
|
+ void __iomem *xbar;
|
|
|
+ s16 (*xbar_chans)[2];
|
|
|
+ size_t nelm = sz / sizeof(s16);
|
|
|
+ u32 shift, offset, mux;
|
|
|
+ int ret, i;
|
|
|
+
|
|
|
+ xbar_chans = devm_kzalloc(dev, (nelm + 2) * sizeof(s16), GFP_KERNEL);
|
|
|
+ if (!xbar_chans)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ ret = of_address_to_resource(dev->of_node, 1, &res);
|
|
|
+ if (ret)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ xbar = devm_ioremap(dev, res.start, resource_size(&res));
|
|
|
+ if (!xbar)
|
|
|
+ return -ENOMEM;
|
|
|
+
|
|
|
+ ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
|
|
|
+ nelm);
|
|
|
+ if (ret)
|
|
|
+ return -EIO;
|
|
|
+
|
|
|
+ /* Invalidate last entry for the other user of this mess */
|
|
|
+ nelm >>= 1;
|
|
|
+ xbar_chans[nelm][0] = -1;
|
|
|
+ xbar_chans[nelm][1] = -1;
|
|
|
+
|
|
|
+ for (i = 0; i < nelm; i++) {
|
|
|
+ shift = (xbar_chans[i][1] & 0x03) << 3;
|
|
|
+ offset = xbar_chans[i][1] & 0xfffffffc;
|
|
|
+ mux = readl(xbar + offset);
|
|
|
+ mux &= ~(0xff << shift);
|
|
|
+ mux |= xbar_chans[i][0] << shift;
|
|
|
+ writel(mux, (xbar + offset));
|
|
|
+ }
|
|
|
+
|
|
|
+ pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static int edma_of_parse_dt(struct device *dev, struct edma_soc_info *pdata)
|
|
|
+{
|
|
|
+ int ret = 0;
|
|
|
+ struct property *prop;
|
|
|
+ size_t sz;
|
|
|
+ struct edma_rsv_info *rsv_info;
|
|
|
+
|
|
|
+ rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
|
|
|
+ if (!rsv_info)
|
|
|
+ return -ENOMEM;
|
|
|
+ pdata->rsv = rsv_info;
|
|
|
+
|
|
|
+ prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", &sz);
|
|
|
+ if (prop)
|
|
|
+ ret = edma_xbar_event_map(dev, pdata, sz);
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
|
|
|
+{
|
|
|
+ struct edma_soc_info *info;
|
|
|
+ int ret;
|
|
|
+
|
|
|
+ info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
|
|
|
+ if (!info)
|
|
|
+ return ERR_PTR(-ENOMEM);
|
|
|
+
|
|
|
+ ret = edma_of_parse_dt(dev, info);
|
|
|
+ if (ret)
|
|
|
+ return ERR_PTR(ret);
|
|
|
+
|
|
|
+ return info;
|
|
|
+}
|
|
|
+#else
|
|
|
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
|
|
|
+{
|
|
|
+ return ERR_PTR(-EINVAL);
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
static int edma_probe(struct platform_device *pdev)
|
|
|
{
|
|
|
- struct edma_cc *ecc;
|
|
|
- struct device_node *parent_node = pdev->dev.parent->of_node;
|
|
|
- struct platform_device *parent_pdev =
|
|
|
- to_platform_device(pdev->dev.parent);
|
|
|
+ struct edma_soc_info *info = pdev->dev.platform_data;
|
|
|
+ s8 (*queue_priority_mapping)[2];
|
|
|
+ int i, off, ln;
|
|
|
+ const s16 (*rsv_chans)[2];
|
|
|
+ const s16 (*rsv_slots)[2];
|
|
|
+ const s16 (*xbar_chans)[2];
|
|
|
+ int irq;
|
|
|
+ char *irq_name;
|
|
|
+ struct resource *mem;
|
|
|
+ struct device_node *node = pdev->dev.of_node;
|
|
|
+ struct device *dev = &pdev->dev;
|
|
|
+ struct edma_cc *ecc;
|
|
|
int ret;
|
|
|
|
|
|
+ if (node) {
|
|
|
+ info = edma_setup_info_from_dt(dev);
|
|
|
+ if (IS_ERR(info)) {
|
|
|
+ dev_err(dev, "failed to get DT data\n");
|
|
|
+ return PTR_ERR(info);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!info)
|
|
|
+ return -ENODEV;
|
|
|
+
|
|
|
+ pm_runtime_enable(dev);
|
|
|
+ ret = pm_runtime_get_sync(dev);
|
|
|
+ if (ret < 0) {
|
|
|
+ dev_err(dev, "pm_runtime_get_sync() failed\n");
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+
|
|
|
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
|
|
|
if (ret)
|
|
|
return ret;
|
|
@@ -1009,15 +2221,123 @@ static int edma_probe(struct platform_device *pdev)
|
|
|
return -ENOMEM;
|
|
|
}
|
|
|
|
|
|
- ecc->cc = edma_get_data(pdev->dev.parent);
|
|
|
- if (!ecc->cc)
|
|
|
- return -ENODEV;
|
|
|
+ ecc->dev = dev;
|
|
|
+ ecc->id = pdev->id;
|
|
|
+ /* When booting with DT the pdev->id is -1 */
|
|
|
+ if (ecc->id < 0)
|
|
|
+ ecc->id = 0;
|
|
|
+
|
|
|
+ mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
|
|
|
+ if (!mem) {
|
|
|
+ dev_dbg(dev, "mem resource not found, using index 0\n");
|
|
|
+ mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
|
+ if (!mem) {
|
|
|
+ dev_err(dev, "no mem resource?\n");
|
|
|
+ return -ENODEV;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ecc->base = devm_ioremap_resource(dev, mem);
|
|
|
+ if (IS_ERR(ecc->base))
|
|
|
+ return PTR_ERR(ecc->base);
|
|
|
+
|
|
|
+ platform_set_drvdata(pdev, ecc);
|
|
|
+
|
|
|
+ /* Get eDMA3 configuration from IP */
|
|
|
+ ret = edma_setup_from_hw(dev, info, ecc);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
+
|
|
|
+ ecc->default_queue = info->default_queue;
|
|
|
+
|
|
|
+ for (i = 0; i < ecc->num_slots; i++)
|
|
|
+ edma_write_slot(ecc, i, &dummy_paramset);
|
|
|
+
|
|
|
+ /* Mark all channels as unused */
|
|
|
+ memset(ecc->edma_unused, 0xff, sizeof(ecc->edma_unused));
|
|
|
+
|
|
|
+ if (info->rsv) {
|
|
|
+ /* Clear the reserved channels in unused list */
|
|
|
+ rsv_chans = info->rsv->rsv_chans;
|
|
|
+ if (rsv_chans) {
|
|
|
+ for (i = 0; rsv_chans[i][0] != -1; i++) {
|
|
|
+ off = rsv_chans[i][0];
|
|
|
+ ln = rsv_chans[i][1];
|
|
|
+ clear_bits(off, ln, ecc->edma_unused);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Set the reserved slots in inuse list */
|
|
|
+ rsv_slots = info->rsv->rsv_slots;
|
|
|
+ if (rsv_slots) {
|
|
|
+ for (i = 0; rsv_slots[i][0] != -1; i++) {
|
|
|
+ off = rsv_slots[i][0];
|
|
|
+ ln = rsv_slots[i][1];
|
|
|
+ set_bits(off, ln, ecc->edma_inuse);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Clear the xbar mapped channels in unused list */
|
|
|
+ xbar_chans = info->xbar_chans;
|
|
|
+ if (xbar_chans) {
|
|
|
+ for (i = 0; xbar_chans[i][1] != -1; i++) {
|
|
|
+ off = xbar_chans[i][1];
|
|
|
+ clear_bits(off, 1, ecc->edma_unused);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ irq = platform_get_irq_byname(pdev, "edma3_ccint");
|
|
|
+ if (irq < 0 && node)
|
|
|
+ irq = irq_of_parse_and_map(node, 0);
|
|
|
+
|
|
|
+ if (irq >= 0) {
|
|
|
+ irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
|
|
|
+ dev_name(dev));
|
|
|
+ ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
|
|
|
+ ecc);
|
|
|
+ if (ret) {
|
|
|
+ dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
|
|
|
+ if (irq < 0 && node)
|
|
|
+ irq = irq_of_parse_and_map(node, 2);
|
|
|
+
|
|
|
+ if (irq >= 0) {
|
|
|
+ irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
|
|
|
+ dev_name(dev));
|
|
|
+ ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
|
|
|
+ ecc);
|
|
|
+ if (ret) {
|
|
|
+ dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
|
|
|
+ return ret;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < ecc->num_channels; i++)
|
|
|
+ edma_map_dmach_to_queue(ecc, i, info->default_queue);
|
|
|
+
|
|
|
+ queue_priority_mapping = info->queue_priority_mapping;
|
|
|
+
|
|
|
+ /* Event queue priority mapping */
|
|
|
+ for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
|
+ edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
|
|
|
+ queue_priority_mapping[i][1]);
|
|
|
|
|
|
- ecc->ctlr = parent_pdev->id;
|
|
|
- if (ecc->ctlr < 0)
|
|
|
- ecc->ctlr = 0;
|
|
|
+ /* Map the channel to param entry if channel mapping logic exist */
|
|
|
+ if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
|
|
|
+ edma_direct_dmach_to_param_mapping(ecc);
|
|
|
|
|
|
- ecc->dummy_slot = edma_alloc_slot(ecc->cc, EDMA_SLOT_ANY);
|
|
|
+ for (i = 0; i < ecc->num_region; i++) {
|
|
|
+ edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
|
|
|
+ edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
|
|
|
+ edma_write_array(ecc, EDMA_QRAE, i, 0x0);
|
|
|
+ }
|
|
|
+ ecc->info = info;
|
|
|
+
|
|
|
+ ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
|
|
|
if (ecc->dummy_slot < 0) {
|
|
|
dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
|
|
|
return ecc->dummy_slot;
|
|
@@ -1036,19 +2356,16 @@ static int edma_probe(struct platform_device *pdev)
|
|
|
if (ret)
|
|
|
goto err_reg1;
|
|
|
|
|
|
- platform_set_drvdata(pdev, ecc);
|
|
|
-
|
|
|
- if (parent_node) {
|
|
|
- of_dma_controller_register(parent_node, of_dma_xlate_by_chan_id,
|
|
|
+ if (node)
|
|
|
+ of_dma_controller_register(node, of_dma_xlate_by_chan_id,
|
|
|
&ecc->dma_slave);
|
|
|
- }
|
|
|
|
|
|
dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
err_reg1:
|
|
|
- edma_free_slot(ecc->cc, ecc->dummy_slot);
|
|
|
+ edma_free_slot(ecc, ecc->dummy_slot);
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
@@ -1056,21 +2373,60 @@ static int edma_remove(struct platform_device *pdev)
|
|
|
{
|
|
|
struct device *dev = &pdev->dev;
|
|
|
struct edma_cc *ecc = dev_get_drvdata(dev);
|
|
|
- struct device_node *parent_node = pdev->dev.parent->of_node;
|
|
|
|
|
|
- if (parent_node)
|
|
|
- of_dma_controller_free(parent_node);
|
|
|
+ if (pdev->dev.of_node)
|
|
|
+ of_dma_controller_free(pdev->dev.of_node);
|
|
|
dma_async_device_unregister(&ecc->dma_slave);
|
|
|
- edma_free_slot(ecc->cc, ecc->dummy_slot);
|
|
|
+ edma_free_slot(ecc, ecc->dummy_slot);
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
+#ifdef CONFIG_PM_SLEEP
|
|
|
+static int edma_pm_resume(struct device *dev)
|
|
|
+{
|
|
|
+ struct edma_cc *ecc = dev_get_drvdata(dev);
|
|
|
+ int i;
|
|
|
+ s8 (*queue_priority_mapping)[2];
|
|
|
+
|
|
|
+ queue_priority_mapping = ecc->info->queue_priority_mapping;
|
|
|
+
|
|
|
+ /* Event queue priority mapping */
|
|
|
+ for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
|
+ edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
|
|
|
+ queue_priority_mapping[i][1]);
|
|
|
+
|
|
|
+ /* Map the channel to param entry if channel mapping logic */
|
|
|
+ if (edma_read(ecc, EDMA_CCCFG) & CHMAP_EXIST)
|
|
|
+ edma_direct_dmach_to_param_mapping(ecc);
|
|
|
+
|
|
|
+ for (i = 0; i < ecc->num_channels; i++) {
|
|
|
+ if (test_bit(i, ecc->edma_inuse)) {
|
|
|
+ /* ensure access through shadow region 0 */
|
|
|
+ edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
|
|
|
+ BIT(i & 0x1f));
|
|
|
+
|
|
|
+ edma_setup_interrupt(ecc, EDMA_CTLR_CHAN(ecc->id, i),
|
|
|
+ ecc->intr_data[i].callback,
|
|
|
+ ecc->intr_data[i].data);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+static const struct dev_pm_ops edma_pm_ops = {
|
|
|
+ SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
|
|
|
+};
|
|
|
+
|
|
|
static struct platform_driver edma_driver = {
|
|
|
.probe = edma_probe,
|
|
|
.remove = edma_remove,
|
|
|
.driver = {
|
|
|
- .name = "edma-dma-engine",
|
|
|
+ .name = "edma",
|
|
|
+ .pm = &edma_pm_ops,
|
|
|
+ .of_match_table = edma_of_ids,
|
|
|
},
|
|
|
};
|
|
|
|