|
@@ -1,148 +1,23 @@
|
|
|
/*
|
|
|
- * kexec.c - kexec system call
|
|
|
+ * kexec.c - kexec_load system call
|
|
|
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
|
|
|
*
|
|
|
* This source code is licensed under the GNU General Public License,
|
|
|
* Version 2. See the file COPYING for more details.
|
|
|
*/
|
|
|
|
|
|
-#define pr_fmt(fmt) "kexec: " fmt
|
|
|
-
|
|
|
#include <linux/capability.h>
|
|
|
#include <linux/mm.h>
|
|
|
#include <linux/file.h>
|
|
|
-#include <linux/slab.h>
|
|
|
-#include <linux/fs.h>
|
|
|
#include <linux/kexec.h>
|
|
|
#include <linux/mutex.h>
|
|
|
#include <linux/list.h>
|
|
|
-#include <linux/highmem.h>
|
|
|
#include <linux/syscalls.h>
|
|
|
-#include <linux/reboot.h>
|
|
|
-#include <linux/ioport.h>
|
|
|
-#include <linux/hardirq.h>
|
|
|
-#include <linux/elf.h>
|
|
|
-#include <linux/elfcore.h>
|
|
|
-#include <linux/utsname.h>
|
|
|
-#include <linux/numa.h>
|
|
|
-#include <linux/suspend.h>
|
|
|
-#include <linux/device.h>
|
|
|
-#include <linux/freezer.h>
|
|
|
#include <linux/vmalloc.h>
|
|
|
-#include <linux/pm.h>
|
|
|
-#include <linux/cpu.h>
|
|
|
-#include <linux/console.h>
|
|
|
-#include <linux/swap.h>
|
|
|
-#include <linux/syscore_ops.h>
|
|
|
-#include <linux/compiler.h>
|
|
|
-#include <linux/hugetlb.h>
|
|
|
-
|
|
|
-#include <asm/page.h>
|
|
|
-#include <asm/uaccess.h>
|
|
|
-#include <asm/io.h>
|
|
|
-#include <asm/sections.h>
|
|
|
+#include <linux/slab.h>
|
|
|
|
|
|
-#include <crypto/hash.h>
|
|
|
-#include <crypto/sha.h>
|
|
|
#include "kexec_internal.h"
|
|
|
|
|
|
-DEFINE_MUTEX(kexec_mutex);
|
|
|
-
|
|
|
-/* Per cpu memory for storing cpu states in case of system crash. */
|
|
|
-note_buf_t __percpu *crash_notes;
|
|
|
-
|
|
|
-/* vmcoreinfo stuff */
|
|
|
-static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
|
|
|
-u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
|
|
|
-size_t vmcoreinfo_size;
|
|
|
-size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
|
|
|
-
|
|
|
-/* Flag to indicate we are going to kexec a new kernel */
|
|
|
-bool kexec_in_progress = false;
|
|
|
-
|
|
|
-
|
|
|
-/* Location of the reserved area for the crash kernel */
|
|
|
-struct resource crashk_res = {
|
|
|
- .name = "Crash kernel",
|
|
|
- .start = 0,
|
|
|
- .end = 0,
|
|
|
- .flags = IORESOURCE_BUSY | IORESOURCE_MEM
|
|
|
-};
|
|
|
-struct resource crashk_low_res = {
|
|
|
- .name = "Crash kernel",
|
|
|
- .start = 0,
|
|
|
- .end = 0,
|
|
|
- .flags = IORESOURCE_BUSY | IORESOURCE_MEM
|
|
|
-};
|
|
|
-
|
|
|
-int kexec_should_crash(struct task_struct *p)
|
|
|
-{
|
|
|
- /*
|
|
|
- * If crash_kexec_post_notifiers is enabled, don't run
|
|
|
- * crash_kexec() here yet, which must be run after panic
|
|
|
- * notifiers in panic().
|
|
|
- */
|
|
|
- if (crash_kexec_post_notifiers)
|
|
|
- return 0;
|
|
|
- /*
|
|
|
- * There are 4 panic() calls in do_exit() path, each of which
|
|
|
- * corresponds to each of these 4 conditions.
|
|
|
- */
|
|
|
- if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
|
|
|
- return 1;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * When kexec transitions to the new kernel there is a one-to-one
|
|
|
- * mapping between physical and virtual addresses. On processors
|
|
|
- * where you can disable the MMU this is trivial, and easy. For
|
|
|
- * others it is still a simple predictable page table to setup.
|
|
|
- *
|
|
|
- * In that environment kexec copies the new kernel to its final
|
|
|
- * resting place. This means I can only support memory whose
|
|
|
- * physical address can fit in an unsigned long. In particular
|
|
|
- * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
|
|
|
- * If the assembly stub has more restrictive requirements
|
|
|
- * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
|
|
|
- * defined more restrictively in <asm/kexec.h>.
|
|
|
- *
|
|
|
- * The code for the transition from the current kernel to the
|
|
|
- * the new kernel is placed in the control_code_buffer, whose size
|
|
|
- * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
|
|
|
- * page of memory is necessary, but some architectures require more.
|
|
|
- * Because this memory must be identity mapped in the transition from
|
|
|
- * virtual to physical addresses it must live in the range
|
|
|
- * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
|
|
|
- * modifiable.
|
|
|
- *
|
|
|
- * The assembly stub in the control code buffer is passed a linked list
|
|
|
- * of descriptor pages detailing the source pages of the new kernel,
|
|
|
- * and the destination addresses of those source pages. As this data
|
|
|
- * structure is not used in the context of the current OS, it must
|
|
|
- * be self-contained.
|
|
|
- *
|
|
|
- * The code has been made to work with highmem pages and will use a
|
|
|
- * destination page in its final resting place (if it happens
|
|
|
- * to allocate it). The end product of this is that most of the
|
|
|
- * physical address space, and most of RAM can be used.
|
|
|
- *
|
|
|
- * Future directions include:
|
|
|
- * - allocating a page table with the control code buffer identity
|
|
|
- * mapped, to simplify machine_kexec and make kexec_on_panic more
|
|
|
- * reliable.
|
|
|
- */
|
|
|
-
|
|
|
-/*
|
|
|
- * KIMAGE_NO_DEST is an impossible destination address..., for
|
|
|
- * allocating pages whose destination address we do not care about.
|
|
|
- */
|
|
|
-#define KIMAGE_NO_DEST (-1UL)
|
|
|
-
|
|
|
-static struct page *kimage_alloc_page(struct kimage *image,
|
|
|
- gfp_t gfp_mask,
|
|
|
- unsigned long dest);
|
|
|
-
|
|
|
static int copy_user_segment_list(struct kimage *image,
|
|
|
unsigned long nr_segments,
|
|
|
struct kexec_segment __user *segments)
|
|
@@ -160,123 +35,6 @@ static int copy_user_segment_list(struct kimage *image,
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-int sanity_check_segment_list(struct kimage *image)
|
|
|
-{
|
|
|
- int result, i;
|
|
|
- unsigned long nr_segments = image->nr_segments;
|
|
|
-
|
|
|
- /*
|
|
|
- * Verify we have good destination addresses. The caller is
|
|
|
- * responsible for making certain we don't attempt to load
|
|
|
- * the new image into invalid or reserved areas of RAM. This
|
|
|
- * just verifies it is an address we can use.
|
|
|
- *
|
|
|
- * Since the kernel does everything in page size chunks ensure
|
|
|
- * the destination addresses are page aligned. Too many
|
|
|
- * special cases crop of when we don't do this. The most
|
|
|
- * insidious is getting overlapping destination addresses
|
|
|
- * simply because addresses are changed to page size
|
|
|
- * granularity.
|
|
|
- */
|
|
|
- result = -EADDRNOTAVAIL;
|
|
|
- for (i = 0; i < nr_segments; i++) {
|
|
|
- unsigned long mstart, mend;
|
|
|
-
|
|
|
- mstart = image->segment[i].mem;
|
|
|
- mend = mstart + image->segment[i].memsz;
|
|
|
- if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
|
|
|
- return result;
|
|
|
- if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
|
|
|
- return result;
|
|
|
- }
|
|
|
-
|
|
|
- /* Verify our destination addresses do not overlap.
|
|
|
- * If we alloed overlapping destination addresses
|
|
|
- * through very weird things can happen with no
|
|
|
- * easy explanation as one segment stops on another.
|
|
|
- */
|
|
|
- result = -EINVAL;
|
|
|
- for (i = 0; i < nr_segments; i++) {
|
|
|
- unsigned long mstart, mend;
|
|
|
- unsigned long j;
|
|
|
-
|
|
|
- mstart = image->segment[i].mem;
|
|
|
- mend = mstart + image->segment[i].memsz;
|
|
|
- for (j = 0; j < i; j++) {
|
|
|
- unsigned long pstart, pend;
|
|
|
- pstart = image->segment[j].mem;
|
|
|
- pend = pstart + image->segment[j].memsz;
|
|
|
- /* Do the segments overlap ? */
|
|
|
- if ((mend > pstart) && (mstart < pend))
|
|
|
- return result;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Ensure our buffer sizes are strictly less than
|
|
|
- * our memory sizes. This should always be the case,
|
|
|
- * and it is easier to check up front than to be surprised
|
|
|
- * later on.
|
|
|
- */
|
|
|
- result = -EINVAL;
|
|
|
- for (i = 0; i < nr_segments; i++) {
|
|
|
- if (image->segment[i].bufsz > image->segment[i].memsz)
|
|
|
- return result;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Verify we have good destination addresses. Normally
|
|
|
- * the caller is responsible for making certain we don't
|
|
|
- * attempt to load the new image into invalid or reserved
|
|
|
- * areas of RAM. But crash kernels are preloaded into a
|
|
|
- * reserved area of ram. We must ensure the addresses
|
|
|
- * are in the reserved area otherwise preloading the
|
|
|
- * kernel could corrupt things.
|
|
|
- */
|
|
|
-
|
|
|
- if (image->type == KEXEC_TYPE_CRASH) {
|
|
|
- result = -EADDRNOTAVAIL;
|
|
|
- for (i = 0; i < nr_segments; i++) {
|
|
|
- unsigned long mstart, mend;
|
|
|
-
|
|
|
- mstart = image->segment[i].mem;
|
|
|
- mend = mstart + image->segment[i].memsz - 1;
|
|
|
- /* Ensure we are within the crash kernel limits */
|
|
|
- if ((mstart < crashk_res.start) ||
|
|
|
- (mend > crashk_res.end))
|
|
|
- return result;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-struct kimage *do_kimage_alloc_init(void)
|
|
|
-{
|
|
|
- struct kimage *image;
|
|
|
-
|
|
|
- /* Allocate a controlling structure */
|
|
|
- image = kzalloc(sizeof(*image), GFP_KERNEL);
|
|
|
- if (!image)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- image->head = 0;
|
|
|
- image->entry = &image->head;
|
|
|
- image->last_entry = &image->head;
|
|
|
- image->control_page = ~0; /* By default this does not apply */
|
|
|
- image->type = KEXEC_TYPE_DEFAULT;
|
|
|
-
|
|
|
- /* Initialize the list of control pages */
|
|
|
- INIT_LIST_HEAD(&image->control_pages);
|
|
|
-
|
|
|
- /* Initialize the list of destination pages */
|
|
|
- INIT_LIST_HEAD(&image->dest_pages);
|
|
|
-
|
|
|
- /* Initialize the list of unusable pages */
|
|
|
- INIT_LIST_HEAD(&image->unusable_pages);
|
|
|
-
|
|
|
- return image;
|
|
|
-}
|
|
|
-
|
|
|
static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
|
|
|
unsigned long nr_segments,
|
|
|
struct kexec_segment __user *segments,
|
|
@@ -343,597 +101,6 @@ out_free_image:
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-int kimage_is_destination_range(struct kimage *image,
|
|
|
- unsigned long start,
|
|
|
- unsigned long end)
|
|
|
-{
|
|
|
- unsigned long i;
|
|
|
-
|
|
|
- for (i = 0; i < image->nr_segments; i++) {
|
|
|
- unsigned long mstart, mend;
|
|
|
-
|
|
|
- mstart = image->segment[i].mem;
|
|
|
- mend = mstart + image->segment[i].memsz;
|
|
|
- if ((end > mstart) && (start < mend))
|
|
|
- return 1;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
|
|
|
-{
|
|
|
- struct page *pages;
|
|
|
-
|
|
|
- pages = alloc_pages(gfp_mask, order);
|
|
|
- if (pages) {
|
|
|
- unsigned int count, i;
|
|
|
- pages->mapping = NULL;
|
|
|
- set_page_private(pages, order);
|
|
|
- count = 1 << order;
|
|
|
- for (i = 0; i < count; i++)
|
|
|
- SetPageReserved(pages + i);
|
|
|
- }
|
|
|
-
|
|
|
- return pages;
|
|
|
-}
|
|
|
-
|
|
|
-static void kimage_free_pages(struct page *page)
|
|
|
-{
|
|
|
- unsigned int order, count, i;
|
|
|
-
|
|
|
- order = page_private(page);
|
|
|
- count = 1 << order;
|
|
|
- for (i = 0; i < count; i++)
|
|
|
- ClearPageReserved(page + i);
|
|
|
- __free_pages(page, order);
|
|
|
-}
|
|
|
-
|
|
|
-void kimage_free_page_list(struct list_head *list)
|
|
|
-{
|
|
|
- struct list_head *pos, *next;
|
|
|
-
|
|
|
- list_for_each_safe(pos, next, list) {
|
|
|
- struct page *page;
|
|
|
-
|
|
|
- page = list_entry(pos, struct page, lru);
|
|
|
- list_del(&page->lru);
|
|
|
- kimage_free_pages(page);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
|
|
|
- unsigned int order)
|
|
|
-{
|
|
|
- /* Control pages are special, they are the intermediaries
|
|
|
- * that are needed while we copy the rest of the pages
|
|
|
- * to their final resting place. As such they must
|
|
|
- * not conflict with either the destination addresses
|
|
|
- * or memory the kernel is already using.
|
|
|
- *
|
|
|
- * The only case where we really need more than one of
|
|
|
- * these are for architectures where we cannot disable
|
|
|
- * the MMU and must instead generate an identity mapped
|
|
|
- * page table for all of the memory.
|
|
|
- *
|
|
|
- * At worst this runs in O(N) of the image size.
|
|
|
- */
|
|
|
- struct list_head extra_pages;
|
|
|
- struct page *pages;
|
|
|
- unsigned int count;
|
|
|
-
|
|
|
- count = 1 << order;
|
|
|
- INIT_LIST_HEAD(&extra_pages);
|
|
|
-
|
|
|
- /* Loop while I can allocate a page and the page allocated
|
|
|
- * is a destination page.
|
|
|
- */
|
|
|
- do {
|
|
|
- unsigned long pfn, epfn, addr, eaddr;
|
|
|
-
|
|
|
- pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
|
|
|
- if (!pages)
|
|
|
- break;
|
|
|
- pfn = page_to_pfn(pages);
|
|
|
- epfn = pfn + count;
|
|
|
- addr = pfn << PAGE_SHIFT;
|
|
|
- eaddr = epfn << PAGE_SHIFT;
|
|
|
- if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
|
|
|
- kimage_is_destination_range(image, addr, eaddr)) {
|
|
|
- list_add(&pages->lru, &extra_pages);
|
|
|
- pages = NULL;
|
|
|
- }
|
|
|
- } while (!pages);
|
|
|
-
|
|
|
- if (pages) {
|
|
|
- /* Remember the allocated page... */
|
|
|
- list_add(&pages->lru, &image->control_pages);
|
|
|
-
|
|
|
- /* Because the page is already in it's destination
|
|
|
- * location we will never allocate another page at
|
|
|
- * that address. Therefore kimage_alloc_pages
|
|
|
- * will not return it (again) and we don't need
|
|
|
- * to give it an entry in image->segment[].
|
|
|
- */
|
|
|
- }
|
|
|
- /* Deal with the destination pages I have inadvertently allocated.
|
|
|
- *
|
|
|
- * Ideally I would convert multi-page allocations into single
|
|
|
- * page allocations, and add everything to image->dest_pages.
|
|
|
- *
|
|
|
- * For now it is simpler to just free the pages.
|
|
|
- */
|
|
|
- kimage_free_page_list(&extra_pages);
|
|
|
-
|
|
|
- return pages;
|
|
|
-}
|
|
|
-
|
|
|
-static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
|
|
|
- unsigned int order)
|
|
|
-{
|
|
|
- /* Control pages are special, they are the intermediaries
|
|
|
- * that are needed while we copy the rest of the pages
|
|
|
- * to their final resting place. As such they must
|
|
|
- * not conflict with either the destination addresses
|
|
|
- * or memory the kernel is already using.
|
|
|
- *
|
|
|
- * Control pages are also the only pags we must allocate
|
|
|
- * when loading a crash kernel. All of the other pages
|
|
|
- * are specified by the segments and we just memcpy
|
|
|
- * into them directly.
|
|
|
- *
|
|
|
- * The only case where we really need more than one of
|
|
|
- * these are for architectures where we cannot disable
|
|
|
- * the MMU and must instead generate an identity mapped
|
|
|
- * page table for all of the memory.
|
|
|
- *
|
|
|
- * Given the low demand this implements a very simple
|
|
|
- * allocator that finds the first hole of the appropriate
|
|
|
- * size in the reserved memory region, and allocates all
|
|
|
- * of the memory up to and including the hole.
|
|
|
- */
|
|
|
- unsigned long hole_start, hole_end, size;
|
|
|
- struct page *pages;
|
|
|
-
|
|
|
- pages = NULL;
|
|
|
- size = (1 << order) << PAGE_SHIFT;
|
|
|
- hole_start = (image->control_page + (size - 1)) & ~(size - 1);
|
|
|
- hole_end = hole_start + size - 1;
|
|
|
- while (hole_end <= crashk_res.end) {
|
|
|
- unsigned long i;
|
|
|
-
|
|
|
- if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
|
|
|
- break;
|
|
|
- /* See if I overlap any of the segments */
|
|
|
- for (i = 0; i < image->nr_segments; i++) {
|
|
|
- unsigned long mstart, mend;
|
|
|
-
|
|
|
- mstart = image->segment[i].mem;
|
|
|
- mend = mstart + image->segment[i].memsz - 1;
|
|
|
- if ((hole_end >= mstart) && (hole_start <= mend)) {
|
|
|
- /* Advance the hole to the end of the segment */
|
|
|
- hole_start = (mend + (size - 1)) & ~(size - 1);
|
|
|
- hole_end = hole_start + size - 1;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- /* If I don't overlap any segments I have found my hole! */
|
|
|
- if (i == image->nr_segments) {
|
|
|
- pages = pfn_to_page(hole_start >> PAGE_SHIFT);
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- if (pages)
|
|
|
- image->control_page = hole_end;
|
|
|
-
|
|
|
- return pages;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-struct page *kimage_alloc_control_pages(struct kimage *image,
|
|
|
- unsigned int order)
|
|
|
-{
|
|
|
- struct page *pages = NULL;
|
|
|
-
|
|
|
- switch (image->type) {
|
|
|
- case KEXEC_TYPE_DEFAULT:
|
|
|
- pages = kimage_alloc_normal_control_pages(image, order);
|
|
|
- break;
|
|
|
- case KEXEC_TYPE_CRASH:
|
|
|
- pages = kimage_alloc_crash_control_pages(image, order);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- return pages;
|
|
|
-}
|
|
|
-
|
|
|
-static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
|
|
|
-{
|
|
|
- if (*image->entry != 0)
|
|
|
- image->entry++;
|
|
|
-
|
|
|
- if (image->entry == image->last_entry) {
|
|
|
- kimage_entry_t *ind_page;
|
|
|
- struct page *page;
|
|
|
-
|
|
|
- page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
|
|
|
- if (!page)
|
|
|
- return -ENOMEM;
|
|
|
-
|
|
|
- ind_page = page_address(page);
|
|
|
- *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
|
|
|
- image->entry = ind_page;
|
|
|
- image->last_entry = ind_page +
|
|
|
- ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
|
|
|
- }
|
|
|
- *image->entry = entry;
|
|
|
- image->entry++;
|
|
|
- *image->entry = 0;
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static int kimage_set_destination(struct kimage *image,
|
|
|
- unsigned long destination)
|
|
|
-{
|
|
|
- int result;
|
|
|
-
|
|
|
- destination &= PAGE_MASK;
|
|
|
- result = kimage_add_entry(image, destination | IND_DESTINATION);
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-static int kimage_add_page(struct kimage *image, unsigned long page)
|
|
|
-{
|
|
|
- int result;
|
|
|
-
|
|
|
- page &= PAGE_MASK;
|
|
|
- result = kimage_add_entry(image, page | IND_SOURCE);
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-static void kimage_free_extra_pages(struct kimage *image)
|
|
|
-{
|
|
|
- /* Walk through and free any extra destination pages I may have */
|
|
|
- kimage_free_page_list(&image->dest_pages);
|
|
|
-
|
|
|
- /* Walk through and free any unusable pages I have cached */
|
|
|
- kimage_free_page_list(&image->unusable_pages);
|
|
|
-
|
|
|
-}
|
|
|
-void kimage_terminate(struct kimage *image)
|
|
|
-{
|
|
|
- if (*image->entry != 0)
|
|
|
- image->entry++;
|
|
|
-
|
|
|
- *image->entry = IND_DONE;
|
|
|
-}
|
|
|
-
|
|
|
-#define for_each_kimage_entry(image, ptr, entry) \
|
|
|
- for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
|
|
|
- ptr = (entry & IND_INDIRECTION) ? \
|
|
|
- phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
|
|
|
-
|
|
|
-static void kimage_free_entry(kimage_entry_t entry)
|
|
|
-{
|
|
|
- struct page *page;
|
|
|
-
|
|
|
- page = pfn_to_page(entry >> PAGE_SHIFT);
|
|
|
- kimage_free_pages(page);
|
|
|
-}
|
|
|
-
|
|
|
-void kimage_free(struct kimage *image)
|
|
|
-{
|
|
|
- kimage_entry_t *ptr, entry;
|
|
|
- kimage_entry_t ind = 0;
|
|
|
-
|
|
|
- if (!image)
|
|
|
- return;
|
|
|
-
|
|
|
- kimage_free_extra_pages(image);
|
|
|
- for_each_kimage_entry(image, ptr, entry) {
|
|
|
- if (entry & IND_INDIRECTION) {
|
|
|
- /* Free the previous indirection page */
|
|
|
- if (ind & IND_INDIRECTION)
|
|
|
- kimage_free_entry(ind);
|
|
|
- /* Save this indirection page until we are
|
|
|
- * done with it.
|
|
|
- */
|
|
|
- ind = entry;
|
|
|
- } else if (entry & IND_SOURCE)
|
|
|
- kimage_free_entry(entry);
|
|
|
- }
|
|
|
- /* Free the final indirection page */
|
|
|
- if (ind & IND_INDIRECTION)
|
|
|
- kimage_free_entry(ind);
|
|
|
-
|
|
|
- /* Handle any machine specific cleanup */
|
|
|
- machine_kexec_cleanup(image);
|
|
|
-
|
|
|
- /* Free the kexec control pages... */
|
|
|
- kimage_free_page_list(&image->control_pages);
|
|
|
-
|
|
|
- /*
|
|
|
- * Free up any temporary buffers allocated. This might hit if
|
|
|
- * error occurred much later after buffer allocation.
|
|
|
- */
|
|
|
- if (image->file_mode)
|
|
|
- kimage_file_post_load_cleanup(image);
|
|
|
-
|
|
|
- kfree(image);
|
|
|
-}
|
|
|
-
|
|
|
-static kimage_entry_t *kimage_dst_used(struct kimage *image,
|
|
|
- unsigned long page)
|
|
|
-{
|
|
|
- kimage_entry_t *ptr, entry;
|
|
|
- unsigned long destination = 0;
|
|
|
-
|
|
|
- for_each_kimage_entry(image, ptr, entry) {
|
|
|
- if (entry & IND_DESTINATION)
|
|
|
- destination = entry & PAGE_MASK;
|
|
|
- else if (entry & IND_SOURCE) {
|
|
|
- if (page == destination)
|
|
|
- return ptr;
|
|
|
- destination += PAGE_SIZE;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
-static struct page *kimage_alloc_page(struct kimage *image,
|
|
|
- gfp_t gfp_mask,
|
|
|
- unsigned long destination)
|
|
|
-{
|
|
|
- /*
|
|
|
- * Here we implement safeguards to ensure that a source page
|
|
|
- * is not copied to its destination page before the data on
|
|
|
- * the destination page is no longer useful.
|
|
|
- *
|
|
|
- * To do this we maintain the invariant that a source page is
|
|
|
- * either its own destination page, or it is not a
|
|
|
- * destination page at all.
|
|
|
- *
|
|
|
- * That is slightly stronger than required, but the proof
|
|
|
- * that no problems will not occur is trivial, and the
|
|
|
- * implementation is simply to verify.
|
|
|
- *
|
|
|
- * When allocating all pages normally this algorithm will run
|
|
|
- * in O(N) time, but in the worst case it will run in O(N^2)
|
|
|
- * time. If the runtime is a problem the data structures can
|
|
|
- * be fixed.
|
|
|
- */
|
|
|
- struct page *page;
|
|
|
- unsigned long addr;
|
|
|
-
|
|
|
- /*
|
|
|
- * Walk through the list of destination pages, and see if I
|
|
|
- * have a match.
|
|
|
- */
|
|
|
- list_for_each_entry(page, &image->dest_pages, lru) {
|
|
|
- addr = page_to_pfn(page) << PAGE_SHIFT;
|
|
|
- if (addr == destination) {
|
|
|
- list_del(&page->lru);
|
|
|
- return page;
|
|
|
- }
|
|
|
- }
|
|
|
- page = NULL;
|
|
|
- while (1) {
|
|
|
- kimage_entry_t *old;
|
|
|
-
|
|
|
- /* Allocate a page, if we run out of memory give up */
|
|
|
- page = kimage_alloc_pages(gfp_mask, 0);
|
|
|
- if (!page)
|
|
|
- return NULL;
|
|
|
- /* If the page cannot be used file it away */
|
|
|
- if (page_to_pfn(page) >
|
|
|
- (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
|
|
|
- list_add(&page->lru, &image->unusable_pages);
|
|
|
- continue;
|
|
|
- }
|
|
|
- addr = page_to_pfn(page) << PAGE_SHIFT;
|
|
|
-
|
|
|
- /* If it is the destination page we want use it */
|
|
|
- if (addr == destination)
|
|
|
- break;
|
|
|
-
|
|
|
- /* If the page is not a destination page use it */
|
|
|
- if (!kimage_is_destination_range(image, addr,
|
|
|
- addr + PAGE_SIZE))
|
|
|
- break;
|
|
|
-
|
|
|
- /*
|
|
|
- * I know that the page is someones destination page.
|
|
|
- * See if there is already a source page for this
|
|
|
- * destination page. And if so swap the source pages.
|
|
|
- */
|
|
|
- old = kimage_dst_used(image, addr);
|
|
|
- if (old) {
|
|
|
- /* If so move it */
|
|
|
- unsigned long old_addr;
|
|
|
- struct page *old_page;
|
|
|
-
|
|
|
- old_addr = *old & PAGE_MASK;
|
|
|
- old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
|
|
|
- copy_highpage(page, old_page);
|
|
|
- *old = addr | (*old & ~PAGE_MASK);
|
|
|
-
|
|
|
- /* The old page I have found cannot be a
|
|
|
- * destination page, so return it if it's
|
|
|
- * gfp_flags honor the ones passed in.
|
|
|
- */
|
|
|
- if (!(gfp_mask & __GFP_HIGHMEM) &&
|
|
|
- PageHighMem(old_page)) {
|
|
|
- kimage_free_pages(old_page);
|
|
|
- continue;
|
|
|
- }
|
|
|
- addr = old_addr;
|
|
|
- page = old_page;
|
|
|
- break;
|
|
|
- } else {
|
|
|
- /* Place the page on the destination list I
|
|
|
- * will use it later.
|
|
|
- */
|
|
|
- list_add(&page->lru, &image->dest_pages);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return page;
|
|
|
-}
|
|
|
-
|
|
|
-static int kimage_load_normal_segment(struct kimage *image,
|
|
|
- struct kexec_segment *segment)
|
|
|
-{
|
|
|
- unsigned long maddr;
|
|
|
- size_t ubytes, mbytes;
|
|
|
- int result;
|
|
|
- unsigned char __user *buf = NULL;
|
|
|
- unsigned char *kbuf = NULL;
|
|
|
-
|
|
|
- result = 0;
|
|
|
- if (image->file_mode)
|
|
|
- kbuf = segment->kbuf;
|
|
|
- else
|
|
|
- buf = segment->buf;
|
|
|
- ubytes = segment->bufsz;
|
|
|
- mbytes = segment->memsz;
|
|
|
- maddr = segment->mem;
|
|
|
-
|
|
|
- result = kimage_set_destination(image, maddr);
|
|
|
- if (result < 0)
|
|
|
- goto out;
|
|
|
-
|
|
|
- while (mbytes) {
|
|
|
- struct page *page;
|
|
|
- char *ptr;
|
|
|
- size_t uchunk, mchunk;
|
|
|
-
|
|
|
- page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
|
|
|
- if (!page) {
|
|
|
- result = -ENOMEM;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- result = kimage_add_page(image, page_to_pfn(page)
|
|
|
- << PAGE_SHIFT);
|
|
|
- if (result < 0)
|
|
|
- goto out;
|
|
|
-
|
|
|
- ptr = kmap(page);
|
|
|
- /* Start with a clear page */
|
|
|
- clear_page(ptr);
|
|
|
- ptr += maddr & ~PAGE_MASK;
|
|
|
- mchunk = min_t(size_t, mbytes,
|
|
|
- PAGE_SIZE - (maddr & ~PAGE_MASK));
|
|
|
- uchunk = min(ubytes, mchunk);
|
|
|
-
|
|
|
- /* For file based kexec, source pages are in kernel memory */
|
|
|
- if (image->file_mode)
|
|
|
- memcpy(ptr, kbuf, uchunk);
|
|
|
- else
|
|
|
- result = copy_from_user(ptr, buf, uchunk);
|
|
|
- kunmap(page);
|
|
|
- if (result) {
|
|
|
- result = -EFAULT;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- ubytes -= uchunk;
|
|
|
- maddr += mchunk;
|
|
|
- if (image->file_mode)
|
|
|
- kbuf += mchunk;
|
|
|
- else
|
|
|
- buf += mchunk;
|
|
|
- mbytes -= mchunk;
|
|
|
- }
|
|
|
-out:
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-static int kimage_load_crash_segment(struct kimage *image,
|
|
|
- struct kexec_segment *segment)
|
|
|
-{
|
|
|
- /* For crash dumps kernels we simply copy the data from
|
|
|
- * user space to it's destination.
|
|
|
- * We do things a page at a time for the sake of kmap.
|
|
|
- */
|
|
|
- unsigned long maddr;
|
|
|
- size_t ubytes, mbytes;
|
|
|
- int result;
|
|
|
- unsigned char __user *buf = NULL;
|
|
|
- unsigned char *kbuf = NULL;
|
|
|
-
|
|
|
- result = 0;
|
|
|
- if (image->file_mode)
|
|
|
- kbuf = segment->kbuf;
|
|
|
- else
|
|
|
- buf = segment->buf;
|
|
|
- ubytes = segment->bufsz;
|
|
|
- mbytes = segment->memsz;
|
|
|
- maddr = segment->mem;
|
|
|
- while (mbytes) {
|
|
|
- struct page *page;
|
|
|
- char *ptr;
|
|
|
- size_t uchunk, mchunk;
|
|
|
-
|
|
|
- page = pfn_to_page(maddr >> PAGE_SHIFT);
|
|
|
- if (!page) {
|
|
|
- result = -ENOMEM;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- ptr = kmap(page);
|
|
|
- ptr += maddr & ~PAGE_MASK;
|
|
|
- mchunk = min_t(size_t, mbytes,
|
|
|
- PAGE_SIZE - (maddr & ~PAGE_MASK));
|
|
|
- uchunk = min(ubytes, mchunk);
|
|
|
- if (mchunk > uchunk) {
|
|
|
- /* Zero the trailing part of the page */
|
|
|
- memset(ptr + uchunk, 0, mchunk - uchunk);
|
|
|
- }
|
|
|
-
|
|
|
- /* For file based kexec, source pages are in kernel memory */
|
|
|
- if (image->file_mode)
|
|
|
- memcpy(ptr, kbuf, uchunk);
|
|
|
- else
|
|
|
- result = copy_from_user(ptr, buf, uchunk);
|
|
|
- kexec_flush_icache_page(page);
|
|
|
- kunmap(page);
|
|
|
- if (result) {
|
|
|
- result = -EFAULT;
|
|
|
- goto out;
|
|
|
- }
|
|
|
- ubytes -= uchunk;
|
|
|
- maddr += mchunk;
|
|
|
- if (image->file_mode)
|
|
|
- kbuf += mchunk;
|
|
|
- else
|
|
|
- buf += mchunk;
|
|
|
- mbytes -= mchunk;
|
|
|
- }
|
|
|
-out:
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-int kimage_load_segment(struct kimage *image,
|
|
|
- struct kexec_segment *segment)
|
|
|
-{
|
|
|
- int result = -ENOMEM;
|
|
|
-
|
|
|
- switch (image->type) {
|
|
|
- case KEXEC_TYPE_DEFAULT:
|
|
|
- result = kimage_load_normal_segment(image, segment);
|
|
|
- break;
|
|
|
- case KEXEC_TYPE_CRASH:
|
|
|
- result = kimage_load_crash_segment(image, segment);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
/*
|
|
|
* Exec Kernel system call: for obvious reasons only root may call it.
|
|
|
*
|
|
@@ -954,9 +121,6 @@ int kimage_load_segment(struct kimage *image,
|
|
|
* kexec does not sync, or unmount filesystems so if you need
|
|
|
* that to happen you need to do that yourself.
|
|
|
*/
|
|
|
-struct kimage *kexec_image;
|
|
|
-struct kimage *kexec_crash_image;
|
|
|
-int kexec_load_disabled;
|
|
|
|
|
|
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
|
|
|
struct kexec_segment __user *, segments, unsigned long, flags)
|
|
@@ -1051,18 +215,6 @@ out:
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-/*
|
|
|
- * Add and remove page tables for crashkernel memory
|
|
|
- *
|
|
|
- * Provide an empty default implementation here -- architecture
|
|
|
- * code may override this
|
|
|
- */
|
|
|
-void __weak crash_map_reserved_pages(void)
|
|
|
-{}
|
|
|
-
|
|
|
-void __weak crash_unmap_reserved_pages(void)
|
|
|
-{}
|
|
|
-
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
|
|
|
compat_ulong_t, nr_segments,
|
|
@@ -1101,646 +253,3 @@ COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
|
|
|
return sys_kexec_load(entry, nr_segments, ksegments, flags);
|
|
|
}
|
|
|
#endif
|
|
|
-
|
|
|
-void crash_kexec(struct pt_regs *regs)
|
|
|
-{
|
|
|
- /* Take the kexec_mutex here to prevent sys_kexec_load
|
|
|
- * running on one cpu from replacing the crash kernel
|
|
|
- * we are using after a panic on a different cpu.
|
|
|
- *
|
|
|
- * If the crash kernel was not located in a fixed area
|
|
|
- * of memory the xchg(&kexec_crash_image) would be
|
|
|
- * sufficient. But since I reuse the memory...
|
|
|
- */
|
|
|
- if (mutex_trylock(&kexec_mutex)) {
|
|
|
- if (kexec_crash_image) {
|
|
|
- struct pt_regs fixed_regs;
|
|
|
-
|
|
|
- crash_setup_regs(&fixed_regs, regs);
|
|
|
- crash_save_vmcoreinfo();
|
|
|
- machine_crash_shutdown(&fixed_regs);
|
|
|
- machine_kexec(kexec_crash_image);
|
|
|
- }
|
|
|
- mutex_unlock(&kexec_mutex);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-size_t crash_get_memory_size(void)
|
|
|
-{
|
|
|
- size_t size = 0;
|
|
|
- mutex_lock(&kexec_mutex);
|
|
|
- if (crashk_res.end != crashk_res.start)
|
|
|
- size = resource_size(&crashk_res);
|
|
|
- mutex_unlock(&kexec_mutex);
|
|
|
- return size;
|
|
|
-}
|
|
|
-
|
|
|
-void __weak crash_free_reserved_phys_range(unsigned long begin,
|
|
|
- unsigned long end)
|
|
|
-{
|
|
|
- unsigned long addr;
|
|
|
-
|
|
|
- for (addr = begin; addr < end; addr += PAGE_SIZE)
|
|
|
- free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
|
|
|
-}
|
|
|
-
|
|
|
-int crash_shrink_memory(unsigned long new_size)
|
|
|
-{
|
|
|
- int ret = 0;
|
|
|
- unsigned long start, end;
|
|
|
- unsigned long old_size;
|
|
|
- struct resource *ram_res;
|
|
|
-
|
|
|
- mutex_lock(&kexec_mutex);
|
|
|
-
|
|
|
- if (kexec_crash_image) {
|
|
|
- ret = -ENOENT;
|
|
|
- goto unlock;
|
|
|
- }
|
|
|
- start = crashk_res.start;
|
|
|
- end = crashk_res.end;
|
|
|
- old_size = (end == 0) ? 0 : end - start + 1;
|
|
|
- if (new_size >= old_size) {
|
|
|
- ret = (new_size == old_size) ? 0 : -EINVAL;
|
|
|
- goto unlock;
|
|
|
- }
|
|
|
-
|
|
|
- ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
|
|
|
- if (!ram_res) {
|
|
|
- ret = -ENOMEM;
|
|
|
- goto unlock;
|
|
|
- }
|
|
|
-
|
|
|
- start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
|
|
|
- end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
|
|
|
-
|
|
|
- crash_map_reserved_pages();
|
|
|
- crash_free_reserved_phys_range(end, crashk_res.end);
|
|
|
-
|
|
|
- if ((start == end) && (crashk_res.parent != NULL))
|
|
|
- release_resource(&crashk_res);
|
|
|
-
|
|
|
- ram_res->start = end;
|
|
|
- ram_res->end = crashk_res.end;
|
|
|
- ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
|
|
|
- ram_res->name = "System RAM";
|
|
|
-
|
|
|
- crashk_res.end = end - 1;
|
|
|
-
|
|
|
- insert_resource(&iomem_resource, ram_res);
|
|
|
- crash_unmap_reserved_pages();
|
|
|
-
|
|
|
-unlock:
|
|
|
- mutex_unlock(&kexec_mutex);
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
|
|
|
- size_t data_len)
|
|
|
-{
|
|
|
- struct elf_note note;
|
|
|
-
|
|
|
- note.n_namesz = strlen(name) + 1;
|
|
|
- note.n_descsz = data_len;
|
|
|
- note.n_type = type;
|
|
|
- memcpy(buf, ¬e, sizeof(note));
|
|
|
- buf += (sizeof(note) + 3)/4;
|
|
|
- memcpy(buf, name, note.n_namesz);
|
|
|
- buf += (note.n_namesz + 3)/4;
|
|
|
- memcpy(buf, data, note.n_descsz);
|
|
|
- buf += (note.n_descsz + 3)/4;
|
|
|
-
|
|
|
- return buf;
|
|
|
-}
|
|
|
-
|
|
|
-static void final_note(u32 *buf)
|
|
|
-{
|
|
|
- struct elf_note note;
|
|
|
-
|
|
|
- note.n_namesz = 0;
|
|
|
- note.n_descsz = 0;
|
|
|
- note.n_type = 0;
|
|
|
- memcpy(buf, ¬e, sizeof(note));
|
|
|
-}
|
|
|
-
|
|
|
-void crash_save_cpu(struct pt_regs *regs, int cpu)
|
|
|
-{
|
|
|
- struct elf_prstatus prstatus;
|
|
|
- u32 *buf;
|
|
|
-
|
|
|
- if ((cpu < 0) || (cpu >= nr_cpu_ids))
|
|
|
- return;
|
|
|
-
|
|
|
- /* Using ELF notes here is opportunistic.
|
|
|
- * I need a well defined structure format
|
|
|
- * for the data I pass, and I need tags
|
|
|
- * on the data to indicate what information I have
|
|
|
- * squirrelled away. ELF notes happen to provide
|
|
|
- * all of that, so there is no need to invent something new.
|
|
|
- */
|
|
|
- buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
|
|
|
- if (!buf)
|
|
|
- return;
|
|
|
- memset(&prstatus, 0, sizeof(prstatus));
|
|
|
- prstatus.pr_pid = current->pid;
|
|
|
- elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
|
|
|
- buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
|
|
|
- &prstatus, sizeof(prstatus));
|
|
|
- final_note(buf);
|
|
|
-}
|
|
|
-
|
|
|
-static int __init crash_notes_memory_init(void)
|
|
|
-{
|
|
|
- /* Allocate memory for saving cpu registers. */
|
|
|
- crash_notes = alloc_percpu(note_buf_t);
|
|
|
- if (!crash_notes) {
|
|
|
- pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
|
|
|
- return -ENOMEM;
|
|
|
- }
|
|
|
- return 0;
|
|
|
-}
|
|
|
-subsys_initcall(crash_notes_memory_init);
|
|
|
-
|
|
|
-
|
|
|
-/*
|
|
|
- * parsing the "crashkernel" commandline
|
|
|
- *
|
|
|
- * this code is intended to be called from architecture specific code
|
|
|
- */
|
|
|
-
|
|
|
-
|
|
|
-/*
|
|
|
- * This function parses command lines in the format
|
|
|
- *
|
|
|
- * crashkernel=ramsize-range:size[,...][@offset]
|
|
|
- *
|
|
|
- * The function returns 0 on success and -EINVAL on failure.
|
|
|
- */
|
|
|
-static int __init parse_crashkernel_mem(char *cmdline,
|
|
|
- unsigned long long system_ram,
|
|
|
- unsigned long long *crash_size,
|
|
|
- unsigned long long *crash_base)
|
|
|
-{
|
|
|
- char *cur = cmdline, *tmp;
|
|
|
-
|
|
|
- /* for each entry of the comma-separated list */
|
|
|
- do {
|
|
|
- unsigned long long start, end = ULLONG_MAX, size;
|
|
|
-
|
|
|
- /* get the start of the range */
|
|
|
- start = memparse(cur, &tmp);
|
|
|
- if (cur == tmp) {
|
|
|
- pr_warn("crashkernel: Memory value expected\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- cur = tmp;
|
|
|
- if (*cur != '-') {
|
|
|
- pr_warn("crashkernel: '-' expected\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- cur++;
|
|
|
-
|
|
|
- /* if no ':' is here, than we read the end */
|
|
|
- if (*cur != ':') {
|
|
|
- end = memparse(cur, &tmp);
|
|
|
- if (cur == tmp) {
|
|
|
- pr_warn("crashkernel: Memory value expected\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- cur = tmp;
|
|
|
- if (end <= start) {
|
|
|
- pr_warn("crashkernel: end <= start\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (*cur != ':') {
|
|
|
- pr_warn("crashkernel: ':' expected\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- cur++;
|
|
|
-
|
|
|
- size = memparse(cur, &tmp);
|
|
|
- if (cur == tmp) {
|
|
|
- pr_warn("Memory value expected\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- cur = tmp;
|
|
|
- if (size >= system_ram) {
|
|
|
- pr_warn("crashkernel: invalid size\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- /* match ? */
|
|
|
- if (system_ram >= start && system_ram < end) {
|
|
|
- *crash_size = size;
|
|
|
- break;
|
|
|
- }
|
|
|
- } while (*cur++ == ',');
|
|
|
-
|
|
|
- if (*crash_size > 0) {
|
|
|
- while (*cur && *cur != ' ' && *cur != '@')
|
|
|
- cur++;
|
|
|
- if (*cur == '@') {
|
|
|
- cur++;
|
|
|
- *crash_base = memparse(cur, &tmp);
|
|
|
- if (cur == tmp) {
|
|
|
- pr_warn("Memory value expected after '@'\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * That function parses "simple" (old) crashkernel command lines like
|
|
|
- *
|
|
|
- * crashkernel=size[@offset]
|
|
|
- *
|
|
|
- * It returns 0 on success and -EINVAL on failure.
|
|
|
- */
|
|
|
-static int __init parse_crashkernel_simple(char *cmdline,
|
|
|
- unsigned long long *crash_size,
|
|
|
- unsigned long long *crash_base)
|
|
|
-{
|
|
|
- char *cur = cmdline;
|
|
|
-
|
|
|
- *crash_size = memparse(cmdline, &cur);
|
|
|
- if (cmdline == cur) {
|
|
|
- pr_warn("crashkernel: memory value expected\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- if (*cur == '@')
|
|
|
- *crash_base = memparse(cur+1, &cur);
|
|
|
- else if (*cur != ' ' && *cur != '\0') {
|
|
|
- pr_warn("crashkernel: unrecognized char\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-#define SUFFIX_HIGH 0
|
|
|
-#define SUFFIX_LOW 1
|
|
|
-#define SUFFIX_NULL 2
|
|
|
-static __initdata char *suffix_tbl[] = {
|
|
|
- [SUFFIX_HIGH] = ",high",
|
|
|
- [SUFFIX_LOW] = ",low",
|
|
|
- [SUFFIX_NULL] = NULL,
|
|
|
-};
|
|
|
-
|
|
|
-/*
|
|
|
- * That function parses "suffix" crashkernel command lines like
|
|
|
- *
|
|
|
- * crashkernel=size,[high|low]
|
|
|
- *
|
|
|
- * It returns 0 on success and -EINVAL on failure.
|
|
|
- */
|
|
|
-static int __init parse_crashkernel_suffix(char *cmdline,
|
|
|
- unsigned long long *crash_size,
|
|
|
- const char *suffix)
|
|
|
-{
|
|
|
- char *cur = cmdline;
|
|
|
-
|
|
|
- *crash_size = memparse(cmdline, &cur);
|
|
|
- if (cmdline == cur) {
|
|
|
- pr_warn("crashkernel: memory value expected\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- /* check with suffix */
|
|
|
- if (strncmp(cur, suffix, strlen(suffix))) {
|
|
|
- pr_warn("crashkernel: unrecognized char\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
- cur += strlen(suffix);
|
|
|
- if (*cur != ' ' && *cur != '\0') {
|
|
|
- pr_warn("crashkernel: unrecognized char\n");
|
|
|
- return -EINVAL;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static __init char *get_last_crashkernel(char *cmdline,
|
|
|
- const char *name,
|
|
|
- const char *suffix)
|
|
|
-{
|
|
|
- char *p = cmdline, *ck_cmdline = NULL;
|
|
|
-
|
|
|
- /* find crashkernel and use the last one if there are more */
|
|
|
- p = strstr(p, name);
|
|
|
- while (p) {
|
|
|
- char *end_p = strchr(p, ' ');
|
|
|
- char *q;
|
|
|
-
|
|
|
- if (!end_p)
|
|
|
- end_p = p + strlen(p);
|
|
|
-
|
|
|
- if (!suffix) {
|
|
|
- int i;
|
|
|
-
|
|
|
- /* skip the one with any known suffix */
|
|
|
- for (i = 0; suffix_tbl[i]; i++) {
|
|
|
- q = end_p - strlen(suffix_tbl[i]);
|
|
|
- if (!strncmp(q, suffix_tbl[i],
|
|
|
- strlen(suffix_tbl[i])))
|
|
|
- goto next;
|
|
|
- }
|
|
|
- ck_cmdline = p;
|
|
|
- } else {
|
|
|
- q = end_p - strlen(suffix);
|
|
|
- if (!strncmp(q, suffix, strlen(suffix)))
|
|
|
- ck_cmdline = p;
|
|
|
- }
|
|
|
-next:
|
|
|
- p = strstr(p+1, name);
|
|
|
- }
|
|
|
-
|
|
|
- if (!ck_cmdline)
|
|
|
- return NULL;
|
|
|
-
|
|
|
- return ck_cmdline;
|
|
|
-}
|
|
|
-
|
|
|
-static int __init __parse_crashkernel(char *cmdline,
|
|
|
- unsigned long long system_ram,
|
|
|
- unsigned long long *crash_size,
|
|
|
- unsigned long long *crash_base,
|
|
|
- const char *name,
|
|
|
- const char *suffix)
|
|
|
-{
|
|
|
- char *first_colon, *first_space;
|
|
|
- char *ck_cmdline;
|
|
|
-
|
|
|
- BUG_ON(!crash_size || !crash_base);
|
|
|
- *crash_size = 0;
|
|
|
- *crash_base = 0;
|
|
|
-
|
|
|
- ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
|
|
|
-
|
|
|
- if (!ck_cmdline)
|
|
|
- return -EINVAL;
|
|
|
-
|
|
|
- ck_cmdline += strlen(name);
|
|
|
-
|
|
|
- if (suffix)
|
|
|
- return parse_crashkernel_suffix(ck_cmdline, crash_size,
|
|
|
- suffix);
|
|
|
- /*
|
|
|
- * if the commandline contains a ':', then that's the extended
|
|
|
- * syntax -- if not, it must be the classic syntax
|
|
|
- */
|
|
|
- first_colon = strchr(ck_cmdline, ':');
|
|
|
- first_space = strchr(ck_cmdline, ' ');
|
|
|
- if (first_colon && (!first_space || first_colon < first_space))
|
|
|
- return parse_crashkernel_mem(ck_cmdline, system_ram,
|
|
|
- crash_size, crash_base);
|
|
|
-
|
|
|
- return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * That function is the entry point for command line parsing and should be
|
|
|
- * called from the arch-specific code.
|
|
|
- */
|
|
|
-int __init parse_crashkernel(char *cmdline,
|
|
|
- unsigned long long system_ram,
|
|
|
- unsigned long long *crash_size,
|
|
|
- unsigned long long *crash_base)
|
|
|
-{
|
|
|
- return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
|
|
|
- "crashkernel=", NULL);
|
|
|
-}
|
|
|
-
|
|
|
-int __init parse_crashkernel_high(char *cmdline,
|
|
|
- unsigned long long system_ram,
|
|
|
- unsigned long long *crash_size,
|
|
|
- unsigned long long *crash_base)
|
|
|
-{
|
|
|
- return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
|
|
|
- "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
|
|
|
-}
|
|
|
-
|
|
|
-int __init parse_crashkernel_low(char *cmdline,
|
|
|
- unsigned long long system_ram,
|
|
|
- unsigned long long *crash_size,
|
|
|
- unsigned long long *crash_base)
|
|
|
-{
|
|
|
- return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
|
|
|
- "crashkernel=", suffix_tbl[SUFFIX_LOW]);
|
|
|
-}
|
|
|
-
|
|
|
-static void update_vmcoreinfo_note(void)
|
|
|
-{
|
|
|
- u32 *buf = vmcoreinfo_note;
|
|
|
-
|
|
|
- if (!vmcoreinfo_size)
|
|
|
- return;
|
|
|
- buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
|
|
|
- vmcoreinfo_size);
|
|
|
- final_note(buf);
|
|
|
-}
|
|
|
-
|
|
|
-void crash_save_vmcoreinfo(void)
|
|
|
-{
|
|
|
- vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
|
|
|
- update_vmcoreinfo_note();
|
|
|
-}
|
|
|
-
|
|
|
-void vmcoreinfo_append_str(const char *fmt, ...)
|
|
|
-{
|
|
|
- va_list args;
|
|
|
- char buf[0x50];
|
|
|
- size_t r;
|
|
|
-
|
|
|
- va_start(args, fmt);
|
|
|
- r = vscnprintf(buf, sizeof(buf), fmt, args);
|
|
|
- va_end(args);
|
|
|
-
|
|
|
- r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
|
|
|
-
|
|
|
- memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
|
|
|
-
|
|
|
- vmcoreinfo_size += r;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * provide an empty default implementation here -- architecture
|
|
|
- * code may override this
|
|
|
- */
|
|
|
-void __weak arch_crash_save_vmcoreinfo(void)
|
|
|
-{}
|
|
|
-
|
|
|
-unsigned long __weak paddr_vmcoreinfo_note(void)
|
|
|
-{
|
|
|
- return __pa((unsigned long)(char *)&vmcoreinfo_note);
|
|
|
-}
|
|
|
-
|
|
|
-static int __init crash_save_vmcoreinfo_init(void)
|
|
|
-{
|
|
|
- VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
|
|
|
- VMCOREINFO_PAGESIZE(PAGE_SIZE);
|
|
|
-
|
|
|
- VMCOREINFO_SYMBOL(init_uts_ns);
|
|
|
- VMCOREINFO_SYMBOL(node_online_map);
|
|
|
-#ifdef CONFIG_MMU
|
|
|
- VMCOREINFO_SYMBOL(swapper_pg_dir);
|
|
|
-#endif
|
|
|
- VMCOREINFO_SYMBOL(_stext);
|
|
|
- VMCOREINFO_SYMBOL(vmap_area_list);
|
|
|
-
|
|
|
-#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
|
- VMCOREINFO_SYMBOL(mem_map);
|
|
|
- VMCOREINFO_SYMBOL(contig_page_data);
|
|
|
-#endif
|
|
|
-#ifdef CONFIG_SPARSEMEM
|
|
|
- VMCOREINFO_SYMBOL(mem_section);
|
|
|
- VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
|
|
|
- VMCOREINFO_STRUCT_SIZE(mem_section);
|
|
|
- VMCOREINFO_OFFSET(mem_section, section_mem_map);
|
|
|
-#endif
|
|
|
- VMCOREINFO_STRUCT_SIZE(page);
|
|
|
- VMCOREINFO_STRUCT_SIZE(pglist_data);
|
|
|
- VMCOREINFO_STRUCT_SIZE(zone);
|
|
|
- VMCOREINFO_STRUCT_SIZE(free_area);
|
|
|
- VMCOREINFO_STRUCT_SIZE(list_head);
|
|
|
- VMCOREINFO_SIZE(nodemask_t);
|
|
|
- VMCOREINFO_OFFSET(page, flags);
|
|
|
- VMCOREINFO_OFFSET(page, _count);
|
|
|
- VMCOREINFO_OFFSET(page, mapping);
|
|
|
- VMCOREINFO_OFFSET(page, lru);
|
|
|
- VMCOREINFO_OFFSET(page, _mapcount);
|
|
|
- VMCOREINFO_OFFSET(page, private);
|
|
|
- VMCOREINFO_OFFSET(pglist_data, node_zones);
|
|
|
- VMCOREINFO_OFFSET(pglist_data, nr_zones);
|
|
|
-#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
|
- VMCOREINFO_OFFSET(pglist_data, node_mem_map);
|
|
|
-#endif
|
|
|
- VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
|
|
|
- VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
|
|
|
- VMCOREINFO_OFFSET(pglist_data, node_id);
|
|
|
- VMCOREINFO_OFFSET(zone, free_area);
|
|
|
- VMCOREINFO_OFFSET(zone, vm_stat);
|
|
|
- VMCOREINFO_OFFSET(zone, spanned_pages);
|
|
|
- VMCOREINFO_OFFSET(free_area, free_list);
|
|
|
- VMCOREINFO_OFFSET(list_head, next);
|
|
|
- VMCOREINFO_OFFSET(list_head, prev);
|
|
|
- VMCOREINFO_OFFSET(vmap_area, va_start);
|
|
|
- VMCOREINFO_OFFSET(vmap_area, list);
|
|
|
- VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
|
|
|
- log_buf_kexec_setup();
|
|
|
- VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
|
|
|
- VMCOREINFO_NUMBER(NR_FREE_PAGES);
|
|
|
- VMCOREINFO_NUMBER(PG_lru);
|
|
|
- VMCOREINFO_NUMBER(PG_private);
|
|
|
- VMCOREINFO_NUMBER(PG_swapcache);
|
|
|
- VMCOREINFO_NUMBER(PG_slab);
|
|
|
-#ifdef CONFIG_MEMORY_FAILURE
|
|
|
- VMCOREINFO_NUMBER(PG_hwpoison);
|
|
|
-#endif
|
|
|
- VMCOREINFO_NUMBER(PG_head_mask);
|
|
|
- VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
|
|
|
-#ifdef CONFIG_HUGETLBFS
|
|
|
- VMCOREINFO_SYMBOL(free_huge_page);
|
|
|
-#endif
|
|
|
-
|
|
|
- arch_crash_save_vmcoreinfo();
|
|
|
- update_vmcoreinfo_note();
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-subsys_initcall(crash_save_vmcoreinfo_init);
|
|
|
-
|
|
|
-/*
|
|
|
- * Move into place and start executing a preloaded standalone
|
|
|
- * executable. If nothing was preloaded return an error.
|
|
|
- */
|
|
|
-int kernel_kexec(void)
|
|
|
-{
|
|
|
- int error = 0;
|
|
|
-
|
|
|
- if (!mutex_trylock(&kexec_mutex))
|
|
|
- return -EBUSY;
|
|
|
- if (!kexec_image) {
|
|
|
- error = -EINVAL;
|
|
|
- goto Unlock;
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef CONFIG_KEXEC_JUMP
|
|
|
- if (kexec_image->preserve_context) {
|
|
|
- lock_system_sleep();
|
|
|
- pm_prepare_console();
|
|
|
- error = freeze_processes();
|
|
|
- if (error) {
|
|
|
- error = -EBUSY;
|
|
|
- goto Restore_console;
|
|
|
- }
|
|
|
- suspend_console();
|
|
|
- error = dpm_suspend_start(PMSG_FREEZE);
|
|
|
- if (error)
|
|
|
- goto Resume_console;
|
|
|
- /* At this point, dpm_suspend_start() has been called,
|
|
|
- * but *not* dpm_suspend_end(). We *must* call
|
|
|
- * dpm_suspend_end() now. Otherwise, drivers for
|
|
|
- * some devices (e.g. interrupt controllers) become
|
|
|
- * desynchronized with the actual state of the
|
|
|
- * hardware at resume time, and evil weirdness ensues.
|
|
|
- */
|
|
|
- error = dpm_suspend_end(PMSG_FREEZE);
|
|
|
- if (error)
|
|
|
- goto Resume_devices;
|
|
|
- error = disable_nonboot_cpus();
|
|
|
- if (error)
|
|
|
- goto Enable_cpus;
|
|
|
- local_irq_disable();
|
|
|
- error = syscore_suspend();
|
|
|
- if (error)
|
|
|
- goto Enable_irqs;
|
|
|
- } else
|
|
|
-#endif
|
|
|
- {
|
|
|
- kexec_in_progress = true;
|
|
|
- kernel_restart_prepare(NULL);
|
|
|
- migrate_to_reboot_cpu();
|
|
|
-
|
|
|
- /*
|
|
|
- * migrate_to_reboot_cpu() disables CPU hotplug assuming that
|
|
|
- * no further code needs to use CPU hotplug (which is true in
|
|
|
- * the reboot case). However, the kexec path depends on using
|
|
|
- * CPU hotplug again; so re-enable it here.
|
|
|
- */
|
|
|
- cpu_hotplug_enable();
|
|
|
- pr_emerg("Starting new kernel\n");
|
|
|
- machine_shutdown();
|
|
|
- }
|
|
|
-
|
|
|
- machine_kexec(kexec_image);
|
|
|
-
|
|
|
-#ifdef CONFIG_KEXEC_JUMP
|
|
|
- if (kexec_image->preserve_context) {
|
|
|
- syscore_resume();
|
|
|
- Enable_irqs:
|
|
|
- local_irq_enable();
|
|
|
- Enable_cpus:
|
|
|
- enable_nonboot_cpus();
|
|
|
- dpm_resume_start(PMSG_RESTORE);
|
|
|
- Resume_devices:
|
|
|
- dpm_resume_end(PMSG_RESTORE);
|
|
|
- Resume_console:
|
|
|
- resume_console();
|
|
|
- thaw_processes();
|
|
|
- Restore_console:
|
|
|
- pm_restore_console();
|
|
|
- unlock_system_sleep();
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
- Unlock:
|
|
|
- mutex_unlock(&kexec_mutex);
|
|
|
- return error;
|
|
|
-}
|