|
@@ -149,18 +149,14 @@ enum ptp_packet_state {
|
|
|
/* Maximum parts-per-billion adjustment that is acceptable */
|
|
|
#define MAX_PPB 1000000
|
|
|
|
|
|
-/* Number of bits required to hold the above */
|
|
|
-#define MAX_PPB_BITS 20
|
|
|
-
|
|
|
-/* Number of extra bits allowed when calculating fractional ns.
|
|
|
- * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
|
|
|
- * be less than 63.
|
|
|
- */
|
|
|
-#define PPB_EXTRA_BITS 2
|
|
|
-
|
|
|
/* Precalculate scale word to avoid long long division at runtime */
|
|
|
-#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
|
|
|
- MAX_PPB_BITS)) / 1000000000LL)
|
|
|
+/* This is equivalent to 2^66 / 10^9. */
|
|
|
+#define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
|
|
|
+
|
|
|
+/* How much to shift down after scaling to convert to FP40 */
|
|
|
+#define PPB_SHIFT_FP40 26
|
|
|
+/* ... and FP44. */
|
|
|
+#define PPB_SHIFT_FP44 22
|
|
|
|
|
|
#define PTP_SYNC_ATTEMPTS 4
|
|
|
|
|
@@ -218,8 +214,8 @@ struct efx_ptp_timeset {
|
|
|
* @channel: The PTP channel (Siena only)
|
|
|
* @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
|
|
|
* separate events)
|
|
|
- * @rxq: Receive queue (awaiting timestamps)
|
|
|
- * @txq: Transmit queue
|
|
|
+ * @rxq: Receive SKB queue (awaiting timestamps)
|
|
|
+ * @txq: Transmit SKB queue
|
|
|
* @evt_list: List of MC receive events awaiting packets
|
|
|
* @evt_free_list: List of free events
|
|
|
* @evt_lock: Lock for manipulating evt_list and evt_free_list
|
|
@@ -233,19 +229,36 @@ struct efx_ptp_timeset {
|
|
|
* @config: Current timestamp configuration
|
|
|
* @enabled: PTP operation enabled
|
|
|
* @mode: Mode in which PTP operating (PTP version)
|
|
|
- * @time_format: Time format supported by this NIC
|
|
|
* @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
|
|
|
* @nic_to_kernel_time: Function to convert from NIC to kernel time
|
|
|
+ * @nic_time.minor_max: Wrap point for NIC minor times
|
|
|
+ * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
|
|
|
+ * in packet prefix and last MCDI time sync event i.e. how much earlier than
|
|
|
+ * the last sync event time a packet timestamp can be.
|
|
|
+ * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
|
|
|
+ * in packet prefix and last MCDI time sync event i.e. how much later than
|
|
|
+ * the last sync event time a packet timestamp can be.
|
|
|
+ * @nic_time.sync_event_minor_shift: Shift required to make minor time from
|
|
|
+ * field in MCDI time sync event.
|
|
|
* @min_synchronisation_ns: Minimum acceptable corrected sync window
|
|
|
- * @ts_corrections.tx: Required driver correction of transmit timestamps
|
|
|
- * @ts_corrections.rx: Required driver correction of receive timestamps
|
|
|
+ * @capabilities: Capabilities flags from the NIC
|
|
|
+ * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
|
|
|
+ * timestamps
|
|
|
+ * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
|
|
|
+ * timestamps
|
|
|
* @ts_corrections.pps_out: PPS output error (information only)
|
|
|
* @ts_corrections.pps_in: Required driver correction of PPS input timestamps
|
|
|
+ * @ts_corrections.general_tx: Required driver correction of general packet
|
|
|
+ * transmit timestamps
|
|
|
+ * @ts_corrections.general_rx: Required driver correction of general packet
|
|
|
+ * receive timestamps
|
|
|
* @evt_frags: Partly assembled PTP events
|
|
|
* @evt_frag_idx: Current fragment number
|
|
|
* @evt_code: Last event code
|
|
|
* @start: Address at which MC indicates ready for synchronisation
|
|
|
* @host_time_pps: Host time at last PPS
|
|
|
+ * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
|
|
|
+ * frequency adjustment into a fixed point fractional nanosecond format.
|
|
|
* @current_adjfreq: Current ppb adjustment.
|
|
|
* @phc_clock: Pointer to registered phc device (if primary function)
|
|
|
* @phc_clock_info: Registration structure for phc device
|
|
@@ -264,6 +277,7 @@ struct efx_ptp_timeset {
|
|
|
* @oversize_sync_windows: Number of corrected sync windows that are too large
|
|
|
* @rx_no_timestamp: Number of packets received without a timestamp.
|
|
|
* @timeset: Last set of synchronisation statistics.
|
|
|
+ * @xmit_skb: Transmit SKB function.
|
|
|
*/
|
|
|
struct efx_ptp_data {
|
|
|
struct efx_nic *efx;
|
|
@@ -284,22 +298,31 @@ struct efx_ptp_data {
|
|
|
struct hwtstamp_config config;
|
|
|
bool enabled;
|
|
|
unsigned int mode;
|
|
|
- unsigned int time_format;
|
|
|
void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
|
|
|
ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
|
|
|
s32 correction);
|
|
|
+ struct {
|
|
|
+ u32 minor_max;
|
|
|
+ u32 sync_event_diff_min;
|
|
|
+ u32 sync_event_diff_max;
|
|
|
+ unsigned int sync_event_minor_shift;
|
|
|
+ } nic_time;
|
|
|
unsigned int min_synchronisation_ns;
|
|
|
+ unsigned int capabilities;
|
|
|
struct {
|
|
|
- s32 tx;
|
|
|
- s32 rx;
|
|
|
+ s32 ptp_tx;
|
|
|
+ s32 ptp_rx;
|
|
|
s32 pps_out;
|
|
|
s32 pps_in;
|
|
|
+ s32 general_tx;
|
|
|
+ s32 general_rx;
|
|
|
} ts_corrections;
|
|
|
efx_qword_t evt_frags[MAX_EVENT_FRAGS];
|
|
|
int evt_frag_idx;
|
|
|
int evt_code;
|
|
|
struct efx_buffer start;
|
|
|
struct pps_event_time host_time_pps;
|
|
|
+ unsigned int adjfreq_ppb_shift;
|
|
|
s64 current_adjfreq;
|
|
|
struct ptp_clock *phc_clock;
|
|
|
struct ptp_clock_info phc_clock_info;
|
|
@@ -319,6 +342,7 @@ struct efx_ptp_data {
|
|
|
unsigned int rx_no_timestamp;
|
|
|
struct efx_ptp_timeset
|
|
|
timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
|
|
|
+ void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
|
|
|
};
|
|
|
|
|
|
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
|
|
@@ -329,6 +353,24 @@ static int efx_phc_settime(struct ptp_clock_info *ptp,
|
|
|
static int efx_phc_enable(struct ptp_clock_info *ptp,
|
|
|
struct ptp_clock_request *request, int on);
|
|
|
|
|
|
+bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
|
|
|
+{
|
|
|
+ struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
+
|
|
|
+ return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
|
|
|
+ (nic_data->datapath_caps2 &
|
|
|
+ (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
|
|
|
+ ));
|
|
|
+}
|
|
|
+
|
|
|
+/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
|
|
|
+ * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
|
|
|
+ */
|
|
|
+bool efx_ptp_want_txqs(struct efx_channel *channel)
|
|
|
+{
|
|
|
+ return efx_ptp_use_mac_tx_timestamps(channel->efx);
|
|
|
+}
|
|
|
+
|
|
|
#define PTP_SW_STAT(ext_name, field_name) \
|
|
|
{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
|
|
|
#define PTP_MC_STAT(ext_name, mcdi_name) \
|
|
@@ -471,6 +513,89 @@ static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
|
|
|
return efx_ptp_s27_to_ktime(nic_major, nic_minor);
|
|
|
}
|
|
|
|
|
|
+/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
|
|
|
+static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
|
|
|
+{
|
|
|
+ struct timespec64 ts = ns_to_timespec64(ns);
|
|
|
+
|
|
|
+ *nic_major = (u32)ts.tv_sec;
|
|
|
+ *nic_minor = ts.tv_nsec * 4;
|
|
|
+}
|
|
|
+
|
|
|
+static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
|
|
|
+ s32 correction)
|
|
|
+{
|
|
|
+ ktime_t kt;
|
|
|
+
|
|
|
+ nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
|
|
|
+ correction = DIV_ROUND_CLOSEST(correction, 4);
|
|
|
+
|
|
|
+ kt = ktime_set(nic_major, nic_minor);
|
|
|
+
|
|
|
+ if (correction >= 0)
|
|
|
+ kt = ktime_add_ns(kt, (u64)correction);
|
|
|
+ else
|
|
|
+ kt = ktime_sub_ns(kt, (u64)-correction);
|
|
|
+ return kt;
|
|
|
+}
|
|
|
+
|
|
|
+struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
|
|
|
+{
|
|
|
+ return efx->ptp_data ? efx->ptp_data->channel : NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 last_sync_timestamp_major(struct efx_nic *efx)
|
|
|
+{
|
|
|
+ struct efx_channel *channel = efx_ptp_channel(efx);
|
|
|
+ u32 major = 0;
|
|
|
+
|
|
|
+ if (channel)
|
|
|
+ major = channel->sync_timestamp_major;
|
|
|
+ return major;
|
|
|
+}
|
|
|
+
|
|
|
+/* The 8000 series and later can provide the time from the MAC, which is only
|
|
|
+ * 48 bits long and provides meta-information in the top 2 bits.
|
|
|
+ */
|
|
|
+static ktime_t
|
|
|
+efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
|
|
|
+ struct efx_ptp_data *ptp,
|
|
|
+ u32 nic_major, u32 nic_minor,
|
|
|
+ s32 correction)
|
|
|
+{
|
|
|
+ ktime_t kt = { 0 };
|
|
|
+
|
|
|
+ if (!(nic_major & 0x80000000)) {
|
|
|
+ WARN_ON_ONCE(nic_major >> 16);
|
|
|
+ /* Use the top bits from the latest sync event. */
|
|
|
+ nic_major &= 0xffff;
|
|
|
+ nic_major |= (last_sync_timestamp_major(efx) & 0xffff0000);
|
|
|
+
|
|
|
+ kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
|
|
|
+ correction);
|
|
|
+ }
|
|
|
+ return kt;
|
|
|
+}
|
|
|
+
|
|
|
+ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
|
|
|
+{
|
|
|
+ struct efx_nic *efx = tx_queue->efx;
|
|
|
+ struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
+ ktime_t kt;
|
|
|
+
|
|
|
+ if (efx_ptp_use_mac_tx_timestamps(efx))
|
|
|
+ kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
|
|
|
+ tx_queue->completed_timestamp_major,
|
|
|
+ tx_queue->completed_timestamp_minor,
|
|
|
+ ptp->ts_corrections.general_tx);
|
|
|
+ else
|
|
|
+ kt = ptp->nic_to_kernel_time(
|
|
|
+ tx_queue->completed_timestamp_major,
|
|
|
+ tx_queue->completed_timestamp_minor,
|
|
|
+ ptp->ts_corrections.general_tx);
|
|
|
+ return kt;
|
|
|
+}
|
|
|
+
|
|
|
/* Get PTP attributes and set up time conversions */
|
|
|
static int efx_ptp_get_attributes(struct efx_nic *efx)
|
|
|
{
|
|
@@ -502,31 +627,71 @@ static int efx_ptp_get_attributes(struct efx_nic *efx)
|
|
|
return rc;
|
|
|
}
|
|
|
|
|
|
- if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
|
|
|
+ switch (fmt) {
|
|
|
+ case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
|
|
|
ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
|
|
|
ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
|
|
|
- } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
|
|
|
+ ptp->nic_time.minor_max = 1 << 27;
|
|
|
+ ptp->nic_time.sync_event_minor_shift = 19;
|
|
|
+ break;
|
|
|
+ case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
|
|
|
ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
|
|
|
ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
|
|
|
- } else {
|
|
|
+ ptp->nic_time.minor_max = 1000000000;
|
|
|
+ ptp->nic_time.sync_event_minor_shift = 22;
|
|
|
+ break;
|
|
|
+ case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
|
|
|
+ ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
|
|
|
+ ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
|
|
|
+ ptp->nic_time.minor_max = 4000000000;
|
|
|
+ ptp->nic_time.sync_event_minor_shift = 24;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
return -ERANGE;
|
|
|
}
|
|
|
|
|
|
- ptp->time_format = fmt;
|
|
|
-
|
|
|
- /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
|
|
|
- * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
|
|
|
- * to use for the minimum acceptable corrected synchronization window.
|
|
|
+ /* Precalculate acceptable difference between the minor time in the
|
|
|
+ * packet prefix and the last MCDI time sync event. We expect the
|
|
|
+ * packet prefix timestamp to be after of sync event by up to one
|
|
|
+ * sync event interval (0.25s) but we allow it to exceed this by a
|
|
|
+ * fuzz factor of (0.1s)
|
|
|
+ */
|
|
|
+ ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
|
|
|
+ - (ptp->nic_time.minor_max / 10);
|
|
|
+ ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
|
|
|
+ + (ptp->nic_time.minor_max / 10);
|
|
|
+
|
|
|
+ /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
|
|
|
+ * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
|
|
|
+ * a value to use for the minimum acceptable corrected synchronization
|
|
|
+ * window and may return further capabilities.
|
|
|
* If we have the extra information store it. For older firmware that
|
|
|
* does not implement the extended command use the default value.
|
|
|
*/
|
|
|
- if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
|
|
|
+ if (rc == 0 &&
|
|
|
+ out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
|
|
|
ptp->min_synchronisation_ns =
|
|
|
MCDI_DWORD(outbuf,
|
|
|
PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
|
|
|
else
|
|
|
ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
|
|
|
|
|
|
+ if (rc == 0 &&
|
|
|
+ out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
|
|
|
+ ptp->capabilities = MCDI_DWORD(outbuf,
|
|
|
+ PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
|
|
|
+ else
|
|
|
+ ptp->capabilities = 0;
|
|
|
+
|
|
|
+ /* Set up the shift for conversion between frequency
|
|
|
+ * adjustments in parts-per-billion and the fixed-point
|
|
|
+ * fractional ns format that the adapter uses.
|
|
|
+ */
|
|
|
+ if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
|
|
|
+ ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
|
|
|
+ else
|
|
|
+ ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
|
|
|
+
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
@@ -534,8 +699,9 @@ static int efx_ptp_get_attributes(struct efx_nic *efx)
|
|
|
static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
|
|
|
{
|
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
|
|
|
- MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
|
|
|
+ MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
|
|
|
int rc;
|
|
|
+ size_t out_len;
|
|
|
|
|
|
/* Get the timestamp corrections from the NIC. If this operation is
|
|
|
* not supported (older NICs) then no correction is required.
|
|
@@ -545,21 +711,37 @@ static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
|
|
|
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
|
|
|
|
|
|
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
|
|
|
- outbuf, sizeof(outbuf), NULL);
|
|
|
+ outbuf, sizeof(outbuf), &out_len);
|
|
|
if (rc == 0) {
|
|
|
- efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
|
|
|
+ efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
|
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
|
|
|
- efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
|
|
|
+ efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
|
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
|
|
|
efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
|
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
|
|
|
efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
|
|
|
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
|
|
|
+
|
|
|
+ if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
|
|
|
+ efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
|
|
|
+ outbuf,
|
|
|
+ PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
|
|
|
+ efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
|
|
|
+ outbuf,
|
|
|
+ PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
|
|
|
+ } else {
|
|
|
+ efx->ptp_data->ts_corrections.general_tx =
|
|
|
+ efx->ptp_data->ts_corrections.ptp_tx;
|
|
|
+ efx->ptp_data->ts_corrections.general_rx =
|
|
|
+ efx->ptp_data->ts_corrections.ptp_rx;
|
|
|
+ }
|
|
|
} else if (rc == -EINVAL) {
|
|
|
- efx->ptp_data->ts_corrections.tx = 0;
|
|
|
- efx->ptp_data->ts_corrections.rx = 0;
|
|
|
+ efx->ptp_data->ts_corrections.ptp_tx = 0;
|
|
|
+ efx->ptp_data->ts_corrections.ptp_rx = 0;
|
|
|
efx->ptp_data->ts_corrections.pps_out = 0;
|
|
|
efx->ptp_data->ts_corrections.pps_in = 0;
|
|
|
+ efx->ptp_data->ts_corrections.general_tx = 0;
|
|
|
+ efx->ptp_data->ts_corrections.general_rx = 0;
|
|
|
} else {
|
|
|
efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
|
|
|
sizeof(outbuf), rc);
|
|
@@ -873,8 +1055,24 @@ static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
|
|
|
return rc;
|
|
|
}
|
|
|
|
|
|
+/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
|
|
|
+static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
|
|
|
+{
|
|
|
+ struct efx_ptp_data *ptp_data = efx->ptp_data;
|
|
|
+ struct efx_tx_queue *tx_queue;
|
|
|
+ u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
|
|
|
+
|
|
|
+ tx_queue = &ptp_data->channel->tx_queue[type];
|
|
|
+ if (tx_queue && tx_queue->timestamping) {
|
|
|
+ efx_enqueue_skb(tx_queue, skb);
|
|
|
+ } else {
|
|
|
+ WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
|
|
|
+ dev_kfree_skb_any(skb);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
/* Transmit a PTP packet, via the MCDI interface, to the wire. */
|
|
|
-static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
|
|
|
+static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
|
|
|
{
|
|
|
struct efx_ptp_data *ptp_data = efx->ptp_data;
|
|
|
struct skb_shared_hwtstamps timestamps;
|
|
@@ -910,16 +1108,16 @@ static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
|
|
|
timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
|
|
|
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
|
|
|
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
|
|
|
- ptp_data->ts_corrections.tx);
|
|
|
+ ptp_data->ts_corrections.ptp_tx);
|
|
|
|
|
|
skb_tstamp_tx(skb, ×tamps);
|
|
|
|
|
|
rc = 0;
|
|
|
|
|
|
fail:
|
|
|
- dev_kfree_skb(skb);
|
|
|
+ dev_kfree_skb_any(skb);
|
|
|
|
|
|
- return rc;
|
|
|
+ return;
|
|
|
}
|
|
|
|
|
|
static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
|
|
@@ -1189,7 +1387,7 @@ static void efx_ptp_worker(struct work_struct *work)
|
|
|
efx_ptp_process_events(efx, &tempq);
|
|
|
|
|
|
while ((skb = skb_dequeue(&ptp_data->txq)))
|
|
|
- efx_ptp_xmit_skb(efx, skb);
|
|
|
+ ptp_data->xmit_skb(efx, skb);
|
|
|
|
|
|
while ((skb = __skb_dequeue(&tempq)))
|
|
|
efx_ptp_process_rx(efx, skb);
|
|
@@ -1239,6 +1437,14 @@ int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
|
|
|
goto fail2;
|
|
|
}
|
|
|
|
|
|
+ if (efx_ptp_use_mac_tx_timestamps(efx)) {
|
|
|
+ ptp->xmit_skb = efx_ptp_xmit_skb_queue;
|
|
|
+ /* Request sync events on this channel. */
|
|
|
+ channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
|
|
|
+ } else {
|
|
|
+ ptp->xmit_skb = efx_ptp_xmit_skb_mc;
|
|
|
+ }
|
|
|
+
|
|
|
INIT_WORK(&ptp->work, efx_ptp_worker);
|
|
|
ptp->config.flags = 0;
|
|
|
ptp->config.tx_type = HWTSTAMP_TX_OFF;
|
|
@@ -1303,11 +1509,21 @@ fail1:
|
|
|
static int efx_ptp_probe_channel(struct efx_channel *channel)
|
|
|
{
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
+ int rc;
|
|
|
|
|
|
channel->irq_moderation_us = 0;
|
|
|
channel->rx_queue.core_index = 0;
|
|
|
|
|
|
- return efx_ptp_probe(efx, channel);
|
|
|
+ rc = efx_ptp_probe(efx, channel);
|
|
|
+ /* Failure to probe PTP is not fatal; this channel will just not be
|
|
|
+ * used for anything.
|
|
|
+ * In the case of EPERM, efx_ptp_probe will print its own message (in
|
|
|
+ * efx_ptp_get_attributes()), so we don't need to.
|
|
|
+ */
|
|
|
+ if (rc && rc != -EPERM)
|
|
|
+ netif_warn(efx, drv, efx->net_dev,
|
|
|
+ "Failed to probe PTP, rc=%d\n", rc);
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
void efx_ptp_remove(struct efx_nic *efx)
|
|
@@ -1332,6 +1548,7 @@ void efx_ptp_remove(struct efx_nic *efx)
|
|
|
|
|
|
efx_nic_free_buffer(efx, &efx->ptp_data->start);
|
|
|
kfree(efx->ptp_data);
|
|
|
+ efx->ptp_data = NULL;
|
|
|
}
|
|
|
|
|
|
static void efx_ptp_remove_channel(struct efx_channel *channel)
|
|
@@ -1548,6 +1765,17 @@ void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
|
|
|
ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
|
|
|
SOF_TIMESTAMPING_RX_HARDWARE |
|
|
|
SOF_TIMESTAMPING_RAW_HARDWARE);
|
|
|
+ /* Check licensed features. If we don't have the license for TX
|
|
|
+ * timestamps, the NIC will not support them.
|
|
|
+ */
|
|
|
+ if (efx_ptp_use_mac_tx_timestamps(efx)) {
|
|
|
+ struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
|
|
+
|
|
|
+ if (!(nic_data->licensed_features &
|
|
|
+ (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
|
|
|
+ ts_info->so_timestamping &=
|
|
|
+ ~SOF_TIMESTAMPING_TX_HARDWARE;
|
|
|
+ }
|
|
|
if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
|
|
|
ts_info->phc_index =
|
|
|
ptp_clock_index(primary->ptp_data->phc_clock);
|
|
@@ -1627,7 +1855,7 @@ static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
|
|
|
evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
|
|
|
EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
|
|
|
EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
|
|
|
- ptp->ts_corrections.rx);
|
|
|
+ ptp->ts_corrections.ptp_rx);
|
|
|
evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
|
|
|
list_add_tail(&evt->link, &ptp->evt_list);
|
|
|
|
|
@@ -1709,9 +1937,20 @@ void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
|
|
|
|
|
|
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
|
|
|
{
|
|
|
+ struct efx_nic *efx = channel->efx;
|
|
|
+ struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
+
|
|
|
+ /* When extracting the sync timestamp minor value, we should discard
|
|
|
+ * the least significant two bits. These are not required in order
|
|
|
+ * to reconstruct full-range timestamps and they are optionally used
|
|
|
+ * to report status depending on the options supplied when subscribing
|
|
|
+ * for sync events.
|
|
|
+ */
|
|
|
channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
|
|
|
channel->sync_timestamp_minor =
|
|
|
- MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
|
|
|
+ (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
|
|
|
+ << ptp->nic_time.sync_event_minor_shift;
|
|
|
+
|
|
|
/* if sync events have been disabled then we want to silently ignore
|
|
|
* this event, so throw away result.
|
|
|
*/
|
|
@@ -1719,15 +1958,6 @@ void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
|
|
|
SYNC_EVENTS_VALID);
|
|
|
}
|
|
|
|
|
|
-/* make some assumptions about the time representation rather than abstract it,
|
|
|
- * since we currently only support one type of inline timestamping and only on
|
|
|
- * EF10.
|
|
|
- */
|
|
|
-#define MINOR_TICKS_PER_SECOND 0x8000000
|
|
|
-/* Fuzz factor for sync events to be out of order with RX events */
|
|
|
-#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
|
|
|
-#define EXPECTED_SYNC_EVENTS_PER_SECOND 4
|
|
|
-
|
|
|
static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
|
|
|
{
|
|
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
|
@@ -1745,31 +1975,33 @@ void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
|
|
|
struct sk_buff *skb)
|
|
|
{
|
|
|
struct efx_nic *efx = channel->efx;
|
|
|
+ struct efx_ptp_data *ptp = efx->ptp_data;
|
|
|
u32 pkt_timestamp_major, pkt_timestamp_minor;
|
|
|
u32 diff, carry;
|
|
|
struct skb_shared_hwtstamps *timestamps;
|
|
|
|
|
|
- pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
|
|
|
- skb_mac_header(skb)) +
|
|
|
- (u32) efx->ptp_data->ts_corrections.rx) &
|
|
|
- (MINOR_TICKS_PER_SECOND - 1);
|
|
|
+ if (channel->sync_events_state != SYNC_EVENTS_VALID)
|
|
|
+ return;
|
|
|
+
|
|
|
+ pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
|
|
|
|
|
|
/* get the difference between the packet and sync timestamps,
|
|
|
* modulo one second
|
|
|
*/
|
|
|
- diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
|
|
|
- (MINOR_TICKS_PER_SECOND - 1);
|
|
|
+ diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
|
|
|
+ if (pkt_timestamp_minor < channel->sync_timestamp_minor)
|
|
|
+ diff += ptp->nic_time.minor_max;
|
|
|
+
|
|
|
/* do we roll over a second boundary and need to carry the one? */
|
|
|
- carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
|
|
|
+ carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
|
|
|
1 : 0;
|
|
|
|
|
|
- if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
|
|
|
- FUZZ) {
|
|
|
+ if (diff <= ptp->nic_time.sync_event_diff_max) {
|
|
|
/* packet is ahead of the sync event by a quarter of a second or
|
|
|
* less (allowing for fuzz)
|
|
|
*/
|
|
|
pkt_timestamp_major = channel->sync_timestamp_major + carry;
|
|
|
- } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
|
|
|
+ } else if (diff >= ptp->nic_time.sync_event_diff_min) {
|
|
|
/* packet is behind the sync event but within the fuzz factor.
|
|
|
* This means the RX packet and sync event crossed as they were
|
|
|
* placed on the event queue, which can sometimes happen.
|
|
@@ -1791,7 +2023,9 @@ void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
|
|
|
/* attach the timestamps to the skb */
|
|
|
timestamps = skb_hwtstamps(skb);
|
|
|
timestamps->hwtstamp =
|
|
|
- efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
|
|
|
+ ptp->nic_to_kernel_time(pkt_timestamp_major,
|
|
|
+ pkt_timestamp_minor,
|
|
|
+ ptp->ts_corrections.general_rx);
|
|
|
}
|
|
|
|
|
|
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
|
|
@@ -1809,9 +2043,10 @@ static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
|
|
|
else if (delta < -MAX_PPB)
|
|
|
delta = -MAX_PPB;
|
|
|
|
|
|
- /* Convert ppb to fixed point ns. */
|
|
|
- adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
|
|
|
- (PPB_EXTRA_BITS + MAX_PPB_BITS));
|
|
|
+ /* Convert ppb to fixed point ns taking care to round correctly. */
|
|
|
+ adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
|
|
|
+ (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
|
|
|
+ ptp_data->adjfreq_ppb_shift;
|
|
|
|
|
|
MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
|
|
|
MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
|
|
@@ -1911,13 +2146,14 @@ static int efx_phc_enable(struct ptp_clock_info *ptp,
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-static const struct efx_channel_type efx_ptp_channel_type = {
|
|
|
+const struct efx_channel_type efx_ptp_channel_type = {
|
|
|
.handle_no_channel = efx_ptp_handle_no_channel,
|
|
|
.pre_probe = efx_ptp_probe_channel,
|
|
|
.post_remove = efx_ptp_remove_channel,
|
|
|
.get_name = efx_ptp_get_channel_name,
|
|
|
/* no copy operation; there is no need to reallocate this channel */
|
|
|
.receive_skb = efx_ptp_rx,
|
|
|
+ .want_txqs = efx_ptp_want_txqs,
|
|
|
.keep_eventq = false,
|
|
|
};
|
|
|
|