|
@@ -27,43 +27,19 @@
|
|
|
/*
|
|
|
* ktime_t:
|
|
|
*
|
|
|
- * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
|
|
|
+ * A single 64-bit variable is used to store the hrtimers
|
|
|
* internal representation of time values in scalar nanoseconds. The
|
|
|
* design plays out best on 64-bit CPUs, where most conversions are
|
|
|
* NOPs and most arithmetic ktime_t operations are plain arithmetic
|
|
|
* operations.
|
|
|
*
|
|
|
- * On 32-bit CPUs an optimized representation of the timespec structure
|
|
|
- * is used to avoid expensive conversions from and to timespecs. The
|
|
|
- * endian-aware order of the tv struct members is chosen to allow
|
|
|
- * mathematical operations on the tv64 member of the union too, which
|
|
|
- * for certain operations produces better code.
|
|
|
- *
|
|
|
- * For architectures with efficient support for 64/32-bit conversions the
|
|
|
- * plain scalar nanosecond based representation can be selected by the
|
|
|
- * config switch CONFIG_KTIME_SCALAR.
|
|
|
*/
|
|
|
union ktime {
|
|
|
s64 tv64;
|
|
|
-#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
|
|
|
- struct {
|
|
|
-# ifdef __BIG_ENDIAN
|
|
|
- s32 sec, nsec;
|
|
|
-# else
|
|
|
- s32 nsec, sec;
|
|
|
-# endif
|
|
|
- } tv;
|
|
|
-#endif
|
|
|
};
|
|
|
|
|
|
typedef union ktime ktime_t; /* Kill this */
|
|
|
|
|
|
-/*
|
|
|
- * ktime_t definitions when using the 64-bit scalar representation:
|
|
|
- */
|
|
|
-
|
|
|
-#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
|
|
|
-
|
|
|
/**
|
|
|
* ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
|
|
|
* @secs: seconds to set
|
|
@@ -123,153 +99,6 @@ static inline ktime_t timeval_to_ktime(struct timeval tv)
|
|
|
/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
|
|
|
#define ktime_to_ns(kt) ((kt).tv64)
|
|
|
|
|
|
-#else /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
|
|
|
-
|
|
|
-/*
|
|
|
- * Helper macros/inlines to get the ktime_t math right in the timespec
|
|
|
- * representation. The macros are sometimes ugly - their actual use is
|
|
|
- * pretty okay-ish, given the circumstances. We do all this for
|
|
|
- * performance reasons. The pure scalar nsec_t based code was nice and
|
|
|
- * simple, but created too many 64-bit / 32-bit conversions and divisions.
|
|
|
- *
|
|
|
- * Be especially aware that negative values are represented in a way
|
|
|
- * that the tv.sec field is negative and the tv.nsec field is greater
|
|
|
- * or equal to zero but less than nanoseconds per second. This is the
|
|
|
- * same representation which is used by timespecs.
|
|
|
- *
|
|
|
- * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
|
|
|
- */
|
|
|
-
|
|
|
-/* Set a ktime_t variable to a value in sec/nsec representation: */
|
|
|
-static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
|
|
|
-{
|
|
|
- return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ktime_sub - subtract two ktime_t variables
|
|
|
- * @lhs: minuend
|
|
|
- * @rhs: subtrahend
|
|
|
- *
|
|
|
- * Return: The remainder of the subtraction.
|
|
|
- */
|
|
|
-static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
|
|
|
-{
|
|
|
- ktime_t res;
|
|
|
-
|
|
|
- res.tv64 = lhs.tv64 - rhs.tv64;
|
|
|
- if (res.tv.nsec < 0)
|
|
|
- res.tv.nsec += NSEC_PER_SEC;
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ktime_add - add two ktime_t variables
|
|
|
- * @add1: addend1
|
|
|
- * @add2: addend2
|
|
|
- *
|
|
|
- * Return: The sum of @add1 and @add2.
|
|
|
- */
|
|
|
-static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
|
|
|
-{
|
|
|
- ktime_t res;
|
|
|
-
|
|
|
- res.tv64 = add1.tv64 + add2.tv64;
|
|
|
- /*
|
|
|
- * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
|
|
|
- * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
|
|
|
- *
|
|
|
- * it's equivalent to:
|
|
|
- * tv.nsec -= NSEC_PER_SEC
|
|
|
- * tv.sec ++;
|
|
|
- */
|
|
|
- if (res.tv.nsec >= NSEC_PER_SEC)
|
|
|
- res.tv64 += (u32)-NSEC_PER_SEC;
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
|
|
- * @kt: addend
|
|
|
- * @nsec: the scalar nsec value to add
|
|
|
- *
|
|
|
- * Return: The sum of @kt and @nsec in ktime_t format.
|
|
|
- */
|
|
|
-extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
|
|
|
-
|
|
|
-/**
|
|
|
- * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
|
|
|
- * @kt: minuend
|
|
|
- * @nsec: the scalar nsec value to subtract
|
|
|
- *
|
|
|
- * Return: The subtraction of @nsec from @kt in ktime_t format.
|
|
|
- */
|
|
|
-extern ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec);
|
|
|
-
|
|
|
-/**
|
|
|
- * timespec_to_ktime - convert a timespec to ktime_t format
|
|
|
- * @ts: the timespec variable to convert
|
|
|
- *
|
|
|
- * Return: A ktime_t variable with the converted timespec value.
|
|
|
- */
|
|
|
-static inline ktime_t timespec_to_ktime(const struct timespec ts)
|
|
|
-{
|
|
|
- return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
|
|
|
- .nsec = (s32)ts.tv_nsec } };
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * timeval_to_ktime - convert a timeval to ktime_t format
|
|
|
- * @tv: the timeval variable to convert
|
|
|
- *
|
|
|
- * Return: A ktime_t variable with the converted timeval value.
|
|
|
- */
|
|
|
-static inline ktime_t timeval_to_ktime(const struct timeval tv)
|
|
|
-{
|
|
|
- return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
|
|
|
- .nsec = (s32)(tv.tv_usec *
|
|
|
- NSEC_PER_USEC) } };
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ktime_to_timespec - convert a ktime_t variable to timespec format
|
|
|
- * @kt: the ktime_t variable to convert
|
|
|
- *
|
|
|
- * Return: The timespec representation of the ktime value.
|
|
|
- */
|
|
|
-static inline struct timespec ktime_to_timespec(const ktime_t kt)
|
|
|
-{
|
|
|
- return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
|
|
|
- .tv_nsec = (long) kt.tv.nsec };
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ktime_to_timeval - convert a ktime_t variable to timeval format
|
|
|
- * @kt: the ktime_t variable to convert
|
|
|
- *
|
|
|
- * Return: The timeval representation of the ktime value.
|
|
|
- */
|
|
|
-static inline struct timeval ktime_to_timeval(const ktime_t kt)
|
|
|
-{
|
|
|
- return (struct timeval) {
|
|
|
- .tv_sec = (time_t) kt.tv.sec,
|
|
|
- .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
|
|
|
- * @kt: the ktime_t variable to convert
|
|
|
- *
|
|
|
- * Return: The scalar nanoseconds representation of @kt.
|
|
|
- */
|
|
|
-static inline s64 ktime_to_ns(const ktime_t kt)
|
|
|
-{
|
|
|
- return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
|
|
|
-}
|
|
|
-
|
|
|
-#endif /* !((BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)) */
|
|
|
|
|
|
/**
|
|
|
* ktime_equal - Compares two ktime_t variables to see if they are equal
|