|
@@ -47,19 +47,20 @@ struct clock_read_data {
|
|
|
* struct clock_data - all data needed for sched_clock (including
|
|
|
* registration of a new clock source)
|
|
|
*
|
|
|
- * @seq: Sequence counter for protecting updates.
|
|
|
+ * @seq: Sequence counter for protecting updates. The lowest
|
|
|
+ * bit is the index for @read_data.
|
|
|
* @read_data: Data required to read from sched_clock.
|
|
|
* @wrap_kt: Duration for which clock can run before wrapping
|
|
|
* @rate: Tick rate of the registered clock
|
|
|
* @actual_read_sched_clock: Registered clock read function
|
|
|
*
|
|
|
* The ordering of this structure has been chosen to optimize cache
|
|
|
- * performance. In particular seq and read_data (combined) should fit
|
|
|
+ * performance. In particular seq and read_data[0] (combined) should fit
|
|
|
* into a single 64 byte cache line.
|
|
|
*/
|
|
|
struct clock_data {
|
|
|
seqcount_t seq;
|
|
|
- struct clock_read_data read_data;
|
|
|
+ struct clock_read_data read_data[2];
|
|
|
ktime_t wrap_kt;
|
|
|
unsigned long rate;
|
|
|
u64 (*actual_read_sched_clock)(void);
|
|
@@ -80,10 +81,9 @@ static u64 notrace jiffy_sched_clock_read(void)
|
|
|
}
|
|
|
|
|
|
static struct clock_data cd ____cacheline_aligned = {
|
|
|
- .read_data = { .mult = NSEC_PER_SEC / HZ,
|
|
|
- .read_sched_clock = jiffy_sched_clock_read, },
|
|
|
+ .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
|
|
|
+ .read_sched_clock = jiffy_sched_clock_read, },
|
|
|
.actual_read_sched_clock = jiffy_sched_clock_read,
|
|
|
-
|
|
|
};
|
|
|
|
|
|
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
|
@@ -95,10 +95,11 @@ unsigned long long notrace sched_clock(void)
|
|
|
{
|
|
|
u64 cyc, res;
|
|
|
unsigned long seq;
|
|
|
- struct clock_read_data *rd = &cd.read_data;
|
|
|
+ struct clock_read_data *rd;
|
|
|
|
|
|
do {
|
|
|
- seq = raw_read_seqcount_begin(&cd.seq);
|
|
|
+ seq = raw_read_seqcount(&cd.seq);
|
|
|
+ rd = cd.read_data + (seq & 1);
|
|
|
|
|
|
cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
|
|
|
rd->sched_clock_mask;
|
|
@@ -108,27 +109,51 @@ unsigned long long notrace sched_clock(void)
|
|
|
return res;
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * Updating the data required to read the clock.
|
|
|
+ *
|
|
|
+ * sched_clock will never observe mis-matched data even if called from
|
|
|
+ * an NMI. We do this by maintaining an odd/even copy of the data and
|
|
|
+ * steering sched_clock to one or the other using a sequence counter.
|
|
|
+ * In order to preserve the data cache profile of sched_clock as much
|
|
|
+ * as possible the system reverts back to the even copy when the update
|
|
|
+ * completes; the odd copy is used *only* during an update.
|
|
|
+ */
|
|
|
+static void update_clock_read_data(struct clock_read_data *rd)
|
|
|
+{
|
|
|
+ /* update the backup (odd) copy with the new data */
|
|
|
+ cd.read_data[1] = *rd;
|
|
|
+
|
|
|
+ /* steer readers towards the odd copy */
|
|
|
+ raw_write_seqcount_latch(&cd.seq);
|
|
|
+
|
|
|
+ /* now its safe for us to update the normal (even) copy */
|
|
|
+ cd.read_data[0] = *rd;
|
|
|
+
|
|
|
+ /* switch readers back to the even copy */
|
|
|
+ raw_write_seqcount_latch(&cd.seq);
|
|
|
+}
|
|
|
+
|
|
|
/*
|
|
|
* Atomically update the sched_clock epoch.
|
|
|
*/
|
|
|
static void update_sched_clock(void)
|
|
|
{
|
|
|
- unsigned long flags;
|
|
|
u64 cyc;
|
|
|
u64 ns;
|
|
|
- struct clock_read_data *rd = &cd.read_data;
|
|
|
+ struct clock_read_data rd;
|
|
|
+
|
|
|
+ rd = cd.read_data[0];
|
|
|
|
|
|
cyc = cd.actual_read_sched_clock();
|
|
|
- ns = rd->epoch_ns +
|
|
|
- cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask,
|
|
|
- rd->mult, rd->shift);
|
|
|
-
|
|
|
- raw_local_irq_save(flags);
|
|
|
- raw_write_seqcount_begin(&cd.seq);
|
|
|
- rd->epoch_ns = ns;
|
|
|
- rd->epoch_cyc = cyc;
|
|
|
- raw_write_seqcount_end(&cd.seq);
|
|
|
- raw_local_irq_restore(flags);
|
|
|
+ ns = rd.epoch_ns +
|
|
|
+ cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
|
|
|
+ rd.mult, rd.shift);
|
|
|
+
|
|
|
+ rd.epoch_ns = ns;
|
|
|
+ rd.epoch_cyc = cyc;
|
|
|
+
|
|
|
+ update_clock_read_data(&rd);
|
|
|
}
|
|
|
|
|
|
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
|
|
@@ -145,7 +170,7 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|
|
u32 new_mult, new_shift;
|
|
|
unsigned long r;
|
|
|
char r_unit;
|
|
|
- struct clock_read_data *rd = &cd.read_data;
|
|
|
+ struct clock_read_data rd;
|
|
|
|
|
|
if (cd.rate > rate)
|
|
|
return;
|
|
@@ -162,22 +187,23 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|
|
wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
|
|
|
cd.wrap_kt = ns_to_ktime(wrap);
|
|
|
|
|
|
+ rd = cd.read_data[0];
|
|
|
+
|
|
|
/* update epoch for new counter and update epoch_ns from old counter*/
|
|
|
new_epoch = read();
|
|
|
cyc = cd.actual_read_sched_clock();
|
|
|
- ns = rd->epoch_ns +
|
|
|
- cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask,
|
|
|
- rd->mult, rd->shift);
|
|
|
+ ns = rd.epoch_ns +
|
|
|
+ cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
|
|
|
+ rd.mult, rd.shift);
|
|
|
cd.actual_read_sched_clock = read;
|
|
|
|
|
|
- raw_write_seqcount_begin(&cd.seq);
|
|
|
- rd->read_sched_clock = read;
|
|
|
- rd->sched_clock_mask = new_mask;
|
|
|
- rd->mult = new_mult;
|
|
|
- rd->shift = new_shift;
|
|
|
- rd->epoch_cyc = new_epoch;
|
|
|
- rd->epoch_ns = ns;
|
|
|
- raw_write_seqcount_end(&cd.seq);
|
|
|
+ rd.read_sched_clock = read;
|
|
|
+ rd.sched_clock_mask = new_mask;
|
|
|
+ rd.mult = new_mult;
|
|
|
+ rd.shift = new_shift;
|
|
|
+ rd.epoch_cyc = new_epoch;
|
|
|
+ rd.epoch_ns = ns;
|
|
|
+ update_clock_read_data(&rd);
|
|
|
|
|
|
r = rate;
|
|
|
if (r >= 4000000) {
|
|
@@ -227,15 +253,22 @@ void __init sched_clock_postinit(void)
|
|
|
*
|
|
|
* This function makes it appear to sched_clock() as if the clock
|
|
|
* stopped counting at its last update.
|
|
|
+ *
|
|
|
+ * This function must only be called from the critical
|
|
|
+ * section in sched_clock(). It relies on the read_seqcount_retry()
|
|
|
+ * at the end of the critical section to be sure we observe the
|
|
|
+ * correct copy of epoch_cyc.
|
|
|
*/
|
|
|
static u64 notrace suspended_sched_clock_read(void)
|
|
|
{
|
|
|
- return cd.read_data.epoch_cyc;
|
|
|
+ unsigned long seq = raw_read_seqcount(&cd.seq);
|
|
|
+
|
|
|
+ return cd.read_data[seq & 1].epoch_cyc;
|
|
|
}
|
|
|
|
|
|
static int sched_clock_suspend(void)
|
|
|
{
|
|
|
- struct clock_read_data *rd = &cd.read_data;
|
|
|
+ struct clock_read_data *rd = &cd.read_data[0];
|
|
|
|
|
|
update_sched_clock();
|
|
|
hrtimer_cancel(&sched_clock_timer);
|
|
@@ -245,7 +278,7 @@ static int sched_clock_suspend(void)
|
|
|
|
|
|
static void sched_clock_resume(void)
|
|
|
{
|
|
|
- struct clock_read_data *rd = &cd.read_data;
|
|
|
+ struct clock_read_data *rd = &cd.read_data[0];
|
|
|
|
|
|
rd->epoch_cyc = cd.actual_read_sched_clock();
|
|
|
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
|