|
@@ -0,0 +1,268 @@
|
|
|
+/*
|
|
|
+ * This test checks the response of the system clock to frequency
|
|
|
+ * steps made with adjtimex(). The frequency error and stability of
|
|
|
+ * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
|
|
|
+ * is measured in two intervals following the step. The test fails if
|
|
|
+ * values from the second interval exceed specified limits.
|
|
|
+ *
|
|
|
+ * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com> 2017
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of version 2 of the GNU General Public License as
|
|
|
+ * published by the Free Software Foundation.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful, but
|
|
|
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
+ * General Public License for more details.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <math.h>
|
|
|
+#include <stdio.h>
|
|
|
+#include <sys/timex.h>
|
|
|
+#include <time.h>
|
|
|
+#include <unistd.h>
|
|
|
+
|
|
|
+#include "../kselftest.h"
|
|
|
+
|
|
|
+#define SAMPLES 100
|
|
|
+#define SAMPLE_READINGS 10
|
|
|
+#define MEAN_SAMPLE_INTERVAL 0.1
|
|
|
+#define STEP_INTERVAL 1.0
|
|
|
+#define MAX_PRECISION 100e-9
|
|
|
+#define MAX_FREQ_ERROR 10e-6
|
|
|
+#define MAX_STDDEV 1000e-9
|
|
|
+
|
|
|
+struct sample {
|
|
|
+ double offset;
|
|
|
+ double time;
|
|
|
+};
|
|
|
+
|
|
|
+static time_t mono_raw_base;
|
|
|
+static time_t mono_base;
|
|
|
+static long user_hz;
|
|
|
+static double precision;
|
|
|
+static double mono_freq_offset;
|
|
|
+
|
|
|
+static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
|
|
|
+{
|
|
|
+ return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
|
|
|
+}
|
|
|
+
|
|
|
+static double get_sample(struct sample *sample)
|
|
|
+{
|
|
|
+ double delay, mindelay = 0.0;
|
|
|
+ struct timespec ts1, ts2, ts3;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ for (i = 0; i < SAMPLE_READINGS; i++) {
|
|
|
+ clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
|
|
|
+ clock_gettime(CLOCK_MONOTONIC, &ts2);
|
|
|
+ clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
|
|
|
+
|
|
|
+ ts1.tv_sec -= mono_raw_base;
|
|
|
+ ts2.tv_sec -= mono_base;
|
|
|
+ ts3.tv_sec -= mono_raw_base;
|
|
|
+
|
|
|
+ delay = diff_timespec(&ts3, &ts1);
|
|
|
+ if (delay <= 1e-9) {
|
|
|
+ i--;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!i || delay < mindelay) {
|
|
|
+ sample->offset = diff_timespec(&ts2, &ts1);
|
|
|
+ sample->offset -= delay / 2.0;
|
|
|
+ sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
|
|
|
+ mindelay = delay;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return mindelay;
|
|
|
+}
|
|
|
+
|
|
|
+static void reset_ntp_error(void)
|
|
|
+{
|
|
|
+ struct timex txc;
|
|
|
+
|
|
|
+ txc.modes = ADJ_SETOFFSET;
|
|
|
+ txc.time.tv_sec = 0;
|
|
|
+ txc.time.tv_usec = 0;
|
|
|
+
|
|
|
+ if (adjtimex(&txc) < 0) {
|
|
|
+ perror("[FAIL] adjtimex");
|
|
|
+ ksft_exit_fail();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void set_frequency(double freq)
|
|
|
+{
|
|
|
+ struct timex txc;
|
|
|
+ int tick_offset;
|
|
|
+
|
|
|
+ tick_offset = 1e6 * freq / user_hz;
|
|
|
+
|
|
|
+ txc.modes = ADJ_TICK | ADJ_FREQUENCY;
|
|
|
+ txc.tick = 1000000 / user_hz + tick_offset;
|
|
|
+ txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
|
|
|
+
|
|
|
+ if (adjtimex(&txc) < 0) {
|
|
|
+ perror("[FAIL] adjtimex");
|
|
|
+ ksft_exit_fail();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void regress(struct sample *samples, int n, double *intercept,
|
|
|
+ double *slope, double *r_stddev, double *r_max)
|
|
|
+{
|
|
|
+ double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
|
|
|
+
|
|
|
+ for (i = 0; i < n; i++) {
|
|
|
+ x = samples[i].time;
|
|
|
+ y = samples[i].offset;
|
|
|
+
|
|
|
+ x_sum += x;
|
|
|
+ y_sum += y;
|
|
|
+ xy_sum += x * y;
|
|
|
+ x2_sum += x * x;
|
|
|
+ }
|
|
|
+
|
|
|
+ *slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
|
|
|
+ *intercept = (y_sum - *slope * x_sum) / n;
|
|
|
+
|
|
|
+ *r_max = 0.0, r2_sum = 0.0;
|
|
|
+
|
|
|
+ for (i = 0; i < n; i++) {
|
|
|
+ x = samples[i].time;
|
|
|
+ y = samples[i].offset;
|
|
|
+ r = fabs(x * *slope + *intercept - y);
|
|
|
+ if (*r_max < r)
|
|
|
+ *r_max = r;
|
|
|
+ r2_sum += r * r;
|
|
|
+ }
|
|
|
+
|
|
|
+ *r_stddev = sqrt(r2_sum / n);
|
|
|
+}
|
|
|
+
|
|
|
+static int run_test(int calibration, double freq_base, double freq_step)
|
|
|
+{
|
|
|
+ struct sample samples[SAMPLES];
|
|
|
+ double intercept, slope, stddev1, max1, stddev2, max2;
|
|
|
+ double freq_error1, freq_error2;
|
|
|
+ int i;
|
|
|
+
|
|
|
+ set_frequency(freq_base);
|
|
|
+
|
|
|
+ for (i = 0; i < 10; i++)
|
|
|
+ usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
|
|
|
+
|
|
|
+ reset_ntp_error();
|
|
|
+
|
|
|
+ set_frequency(freq_base + freq_step);
|
|
|
+
|
|
|
+ for (i = 0; i < 10; i++)
|
|
|
+ usleep(rand() % 2000000 * STEP_INTERVAL / 10);
|
|
|
+
|
|
|
+ set_frequency(freq_base);
|
|
|
+
|
|
|
+ for (i = 0; i < SAMPLES; i++) {
|
|
|
+ usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
|
|
|
+ get_sample(&samples[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (calibration) {
|
|
|
+ regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
|
|
|
+ mono_freq_offset = slope;
|
|
|
+ printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
|
|
|
+ 1e6 * mono_freq_offset);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
|
|
|
+ freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
|
|
|
+ freq_base;
|
|
|
+
|
|
|
+ regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
|
|
|
+ &stddev2, &max2);
|
|
|
+ freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
|
|
|
+ freq_base;
|
|
|
+
|
|
|
+ printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
|
|
|
+ 1e6 * freq_step,
|
|
|
+ 1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
|
|
|
+ 1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
|
|
|
+
|
|
|
+ if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
|
|
|
+ printf("[FAIL]\n");
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ printf("[OK]\n");
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+static void init_test(void)
|
|
|
+{
|
|
|
+ struct timespec ts;
|
|
|
+ struct sample sample;
|
|
|
+
|
|
|
+ if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
|
|
|
+ perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
|
|
|
+ ksft_exit_fail();
|
|
|
+ }
|
|
|
+
|
|
|
+ mono_raw_base = ts.tv_sec;
|
|
|
+
|
|
|
+ if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
|
|
|
+ perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
|
|
|
+ ksft_exit_fail();
|
|
|
+ }
|
|
|
+
|
|
|
+ mono_base = ts.tv_sec;
|
|
|
+
|
|
|
+ user_hz = sysconf(_SC_CLK_TCK);
|
|
|
+
|
|
|
+ precision = get_sample(&sample) / 2.0;
|
|
|
+ printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
|
|
|
+ 1e9 * precision);
|
|
|
+
|
|
|
+ if (precision > MAX_PRECISION) {
|
|
|
+ printf("[SKIP]\n");
|
|
|
+ ksft_exit_skip();
|
|
|
+ }
|
|
|
+
|
|
|
+ printf("[OK]\n");
|
|
|
+ srand(ts.tv_sec ^ ts.tv_nsec);
|
|
|
+
|
|
|
+ run_test(1, 0.0, 0.0);
|
|
|
+}
|
|
|
+
|
|
|
+int main(int argc, char **argv)
|
|
|
+{
|
|
|
+ double freq_base, freq_step;
|
|
|
+ int i, j, fails = 0;
|
|
|
+
|
|
|
+ init_test();
|
|
|
+
|
|
|
+ printf("Checking response to frequency step:\n");
|
|
|
+ printf(" Step 1st interval 2nd interval\n");
|
|
|
+ printf(" Freq Dev Max Freq Dev Max\n");
|
|
|
+
|
|
|
+ for (i = 2; i >= 0; i--) {
|
|
|
+ for (j = 0; j < 5; j++) {
|
|
|
+ freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
|
|
|
+ freq_step = 10e-6 * (1 << (6 * i));
|
|
|
+ fails += run_test(0, freq_base, freq_step);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ set_frequency(0.0);
|
|
|
+
|
|
|
+ if (fails)
|
|
|
+ ksft_exit_fail();
|
|
|
+
|
|
|
+ ksft_exit_pass();
|
|
|
+}
|