|
|
@@ -24,13 +24,12 @@
|
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
|
|
-*******************************************************************************/
|
|
|
+ */
|
|
|
|
|
|
/* e1000_hw.c
|
|
|
* Shared functions for accessing and configuring the MAC
|
|
|
*/
|
|
|
|
|
|
-
|
|
|
#include "e1000_hw.h"
|
|
|
|
|
|
static s32 e1000_check_downshift(struct e1000_hw *hw);
|
|
|
@@ -69,12 +68,11 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
|
|
|
static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
|
|
|
static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
|
|
|
static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
|
|
|
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data,
|
|
|
- u16 count);
|
|
|
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
|
|
|
static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
|
|
|
static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
|
|
|
static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
|
|
|
- u16 words, u16 *data);
|
|
|
+ u16 words, u16 *data);
|
|
|
static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
|
|
|
u16 words, u16 *data);
|
|
|
static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
|
|
|
@@ -83,7 +81,7 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
|
|
|
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
|
|
|
static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
|
|
|
u16 phy_data);
|
|
|
-static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr,
|
|
|
+static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
|
|
|
u16 *phy_data);
|
|
|
static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
|
|
|
static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
|
|
|
@@ -92,159 +90,164 @@ static void e1000_standby_eeprom(struct e1000_hw *hw);
|
|
|
static s32 e1000_set_vco_speed(struct e1000_hw *hw);
|
|
|
static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
|
|
|
static s32 e1000_set_phy_mode(struct e1000_hw *hw);
|
|
|
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
|
|
|
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
|
|
|
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
+ u16 *data);
|
|
|
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
+ u16 *data);
|
|
|
|
|
|
/* IGP cable length table */
|
|
|
static const
|
|
|
-u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
|
|
|
- { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
|
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
|
|
|
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
|
|
|
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
|
|
|
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
|
|
|
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
|
|
|
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
|
|
|
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
|
|
|
+u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
|
|
|
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
|
+ 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
|
|
|
+ 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
|
|
|
+ 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
|
|
|
+ 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
|
|
|
+ 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
|
|
|
+ 100,
|
|
|
+ 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
|
|
|
+ 110, 110,
|
|
|
+ 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
|
|
|
+ 120, 120
|
|
|
+};
|
|
|
|
|
|
static DEFINE_SPINLOCK(e1000_eeprom_lock);
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Set the phy type member in the hw struct.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_set_phy_type - Set the phy type member in the hw struct.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
static s32 e1000_set_phy_type(struct e1000_hw *hw)
|
|
|
{
|
|
|
- DEBUGFUNC("e1000_set_phy_type");
|
|
|
-
|
|
|
- if (hw->mac_type == e1000_undefined)
|
|
|
- return -E1000_ERR_PHY_TYPE;
|
|
|
-
|
|
|
- switch (hw->phy_id) {
|
|
|
- case M88E1000_E_PHY_ID:
|
|
|
- case M88E1000_I_PHY_ID:
|
|
|
- case M88E1011_I_PHY_ID:
|
|
|
- case M88E1111_I_PHY_ID:
|
|
|
- hw->phy_type = e1000_phy_m88;
|
|
|
- break;
|
|
|
- case IGP01E1000_I_PHY_ID:
|
|
|
- if (hw->mac_type == e1000_82541 ||
|
|
|
- hw->mac_type == e1000_82541_rev_2 ||
|
|
|
- hw->mac_type == e1000_82547 ||
|
|
|
- hw->mac_type == e1000_82547_rev_2) {
|
|
|
- hw->phy_type = e1000_phy_igp;
|
|
|
- break;
|
|
|
- }
|
|
|
- default:
|
|
|
- /* Should never have loaded on this device */
|
|
|
- hw->phy_type = e1000_phy_undefined;
|
|
|
- return -E1000_ERR_PHY_TYPE;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
-
|
|
|
-/******************************************************************************
|
|
|
- * IGP phy init script - initializes the GbE PHY
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
-static void e1000_phy_init_script(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- u32 ret_val;
|
|
|
- u16 phy_saved_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_init_script");
|
|
|
-
|
|
|
- if (hw->phy_init_script) {
|
|
|
- msleep(20);
|
|
|
-
|
|
|
- /* Save off the current value of register 0x2F5B to be restored at
|
|
|
- * the end of this routine. */
|
|
|
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
-
|
|
|
- /* Disabled the PHY transmitter */
|
|
|
- e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
|
|
|
-
|
|
|
- msleep(20);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw,0x0000,0x0140);
|
|
|
-
|
|
|
- msleep(5);
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82541:
|
|
|
- case e1000_82547:
|
|
|
- e1000_write_phy_reg(hw, 0x1F95, 0x0001);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x1F79, 0x0018);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x1F30, 0x1600);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x1F31, 0x0014);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x1F32, 0x161C);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x1F94, 0x0003);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x1F96, 0x003F);
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x2010, 0x0008);
|
|
|
- break;
|
|
|
-
|
|
|
- case e1000_82541_rev_2:
|
|
|
- case e1000_82547_rev_2:
|
|
|
- e1000_write_phy_reg(hw, 0x1F73, 0x0099);
|
|
|
- break;
|
|
|
- default:
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- e1000_write_phy_reg(hw, 0x0000, 0x3300);
|
|
|
-
|
|
|
- msleep(20);
|
|
|
-
|
|
|
- /* Now enable the transmitter */
|
|
|
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
-
|
|
|
- if (hw->mac_type == e1000_82547) {
|
|
|
- u16 fused, fine, coarse;
|
|
|
+ DEBUGFUNC("e1000_set_phy_type");
|
|
|
|
|
|
- /* Move to analog registers page */
|
|
|
- e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
|
|
|
+ if (hw->mac_type == e1000_undefined)
|
|
|
+ return -E1000_ERR_PHY_TYPE;
|
|
|
|
|
|
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
|
|
|
- e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
|
|
|
+ switch (hw->phy_id) {
|
|
|
+ case M88E1000_E_PHY_ID:
|
|
|
+ case M88E1000_I_PHY_ID:
|
|
|
+ case M88E1011_I_PHY_ID:
|
|
|
+ case M88E1111_I_PHY_ID:
|
|
|
+ hw->phy_type = e1000_phy_m88;
|
|
|
+ break;
|
|
|
+ case IGP01E1000_I_PHY_ID:
|
|
|
+ if (hw->mac_type == e1000_82541 ||
|
|
|
+ hw->mac_type == e1000_82541_rev_2 ||
|
|
|
+ hw->mac_type == e1000_82547 ||
|
|
|
+ hw->mac_type == e1000_82547_rev_2) {
|
|
|
+ hw->phy_type = e1000_phy_igp;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ /* Should never have loaded on this device */
|
|
|
+ hw->phy_type = e1000_phy_undefined;
|
|
|
+ return -E1000_ERR_PHY_TYPE;
|
|
|
+ }
|
|
|
|
|
|
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
|
|
|
- coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
|
|
|
- if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
|
|
|
- coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
|
|
|
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
|
|
|
- } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
|
|
|
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
|
|
|
+/**
|
|
|
+ * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
+static void e1000_phy_init_script(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ u32 ret_val;
|
|
|
+ u16 phy_saved_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_init_script");
|
|
|
+
|
|
|
+ if (hw->phy_init_script) {
|
|
|
+ msleep(20);
|
|
|
+
|
|
|
+ /* Save off the current value of register 0x2F5B to be restored at
|
|
|
+ * the end of this routine. */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
+
|
|
|
+ /* Disabled the PHY transmitter */
|
|
|
+ e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
|
|
|
+ msleep(20);
|
|
|
+
|
|
|
+ e1000_write_phy_reg(hw, 0x0000, 0x0140);
|
|
|
+ msleep(5);
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82541:
|
|
|
+ case e1000_82547:
|
|
|
+ e1000_write_phy_reg(hw, 0x1F95, 0x0001);
|
|
|
+ e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
|
|
|
+ e1000_write_phy_reg(hw, 0x1F79, 0x0018);
|
|
|
+ e1000_write_phy_reg(hw, 0x1F30, 0x1600);
|
|
|
+ e1000_write_phy_reg(hw, 0x1F31, 0x0014);
|
|
|
+ e1000_write_phy_reg(hw, 0x1F32, 0x161C);
|
|
|
+ e1000_write_phy_reg(hw, 0x1F94, 0x0003);
|
|
|
+ e1000_write_phy_reg(hw, 0x1F96, 0x003F);
|
|
|
+ e1000_write_phy_reg(hw, 0x2010, 0x0008);
|
|
|
+ break;
|
|
|
|
|
|
- fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
|
|
|
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
|
|
|
- (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
|
|
|
+ case e1000_82541_rev_2:
|
|
|
+ case e1000_82547_rev_2:
|
|
|
+ e1000_write_phy_reg(hw, 0x1F73, 0x0099);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
|
|
|
- e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
|
|
|
- e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
|
|
|
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ e1000_write_phy_reg(hw, 0x0000, 0x3300);
|
|
|
+ msleep(20);
|
|
|
+
|
|
|
+ /* Now enable the transmitter */
|
|
|
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
+
|
|
|
+ if (hw->mac_type == e1000_82547) {
|
|
|
+ u16 fused, fine, coarse;
|
|
|
+
|
|
|
+ /* Move to analog registers page */
|
|
|
+ e1000_read_phy_reg(hw,
|
|
|
+ IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
|
|
|
+ &fused);
|
|
|
+
|
|
|
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
|
|
|
+ e1000_read_phy_reg(hw,
|
|
|
+ IGP01E1000_ANALOG_FUSE_STATUS,
|
|
|
+ &fused);
|
|
|
+
|
|
|
+ fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
|
|
|
+ coarse =
|
|
|
+ fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
|
|
|
+
|
|
|
+ if (coarse >
|
|
|
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
|
|
|
+ coarse -=
|
|
|
+ IGP01E1000_ANALOG_FUSE_COARSE_10;
|
|
|
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
|
|
|
+ } else if (coarse ==
|
|
|
+ IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
|
|
|
+ fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
|
|
|
+
|
|
|
+ fused =
|
|
|
+ (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
|
|
|
+ (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
|
|
|
+ (coarse &
|
|
|
+ IGP01E1000_ANALOG_FUSE_COARSE_MASK);
|
|
|
+
|
|
|
+ e1000_write_phy_reg(hw,
|
|
|
+ IGP01E1000_ANALOG_FUSE_CONTROL,
|
|
|
+ fused);
|
|
|
+ e1000_write_phy_reg(hw,
|
|
|
+ IGP01E1000_ANALOG_FUSE_BYPASS,
|
|
|
+ IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Set the mac type member in the hw struct.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_set_mac_type - Set the mac type member in the hw struct.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
s32 e1000_set_mac_type(struct e1000_hw *hw)
|
|
|
{
|
|
|
DEBUGFUNC("e1000_set_mac_type");
|
|
|
@@ -348,1801 +351,1850 @@ s32 e1000_set_mac_type(struct e1000_hw *hw)
|
|
|
return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/*****************************************************************************
|
|
|
- * Set media type and TBI compatibility.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * **************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_set_media_type - Set media type and TBI compatibility.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
void e1000_set_media_type(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 status;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_set_media_type");
|
|
|
-
|
|
|
- if (hw->mac_type != e1000_82543) {
|
|
|
- /* tbi_compatibility is only valid on 82543 */
|
|
|
- hw->tbi_compatibility_en = false;
|
|
|
- }
|
|
|
-
|
|
|
- switch (hw->device_id) {
|
|
|
- case E1000_DEV_ID_82545GM_SERDES:
|
|
|
- case E1000_DEV_ID_82546GB_SERDES:
|
|
|
- hw->media_type = e1000_media_type_internal_serdes;
|
|
|
- break;
|
|
|
- default:
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- hw->media_type = e1000_media_type_fiber;
|
|
|
- break;
|
|
|
- default:
|
|
|
- status = er32(STATUS);
|
|
|
- if (status & E1000_STATUS_TBIMODE) {
|
|
|
- hw->media_type = e1000_media_type_fiber;
|
|
|
- /* tbi_compatibility not valid on fiber */
|
|
|
- hw->tbi_compatibility_en = false;
|
|
|
- } else {
|
|
|
- hw->media_type = e1000_media_type_copper;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
+ u32 status;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_set_media_type");
|
|
|
+
|
|
|
+ if (hw->mac_type != e1000_82543) {
|
|
|
+ /* tbi_compatibility is only valid on 82543 */
|
|
|
+ hw->tbi_compatibility_en = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (hw->device_id) {
|
|
|
+ case E1000_DEV_ID_82545GM_SERDES:
|
|
|
+ case E1000_DEV_ID_82546GB_SERDES:
|
|
|
+ hw->media_type = e1000_media_type_internal_serdes;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ hw->media_type = e1000_media_type_fiber;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ status = er32(STATUS);
|
|
|
+ if (status & E1000_STATUS_TBIMODE) {
|
|
|
+ hw->media_type = e1000_media_type_fiber;
|
|
|
+ /* tbi_compatibility not valid on fiber */
|
|
|
+ hw->tbi_compatibility_en = false;
|
|
|
+ } else {
|
|
|
+ hw->media_type = e1000_media_type_copper;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Reset the transmit and receive units; mask and clear all interrupts.
|
|
|
+/**
|
|
|
+ * e1000_reset_hw: reset the hardware completely
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ * Reset the transmit and receive units; mask and clear all interrupts.
|
|
|
+ */
|
|
|
s32 e1000_reset_hw(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl;
|
|
|
- u32 ctrl_ext;
|
|
|
- u32 icr;
|
|
|
- u32 manc;
|
|
|
- u32 led_ctrl;
|
|
|
- s32 ret_val;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_reset_hw");
|
|
|
-
|
|
|
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
|
|
|
- if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
|
|
- e1000_pci_clear_mwi(hw);
|
|
|
- }
|
|
|
-
|
|
|
- /* Clear interrupt mask to stop board from generating interrupts */
|
|
|
- DEBUGOUT("Masking off all interrupts\n");
|
|
|
- ew32(IMC, 0xffffffff);
|
|
|
-
|
|
|
- /* Disable the Transmit and Receive units. Then delay to allow
|
|
|
- * any pending transactions to complete before we hit the MAC with
|
|
|
- * the global reset.
|
|
|
- */
|
|
|
- ew32(RCTL, 0);
|
|
|
- ew32(TCTL, E1000_TCTL_PSP);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
-
|
|
|
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
|
|
|
- hw->tbi_compatibility_on = false;
|
|
|
-
|
|
|
- /* Delay to allow any outstanding PCI transactions to complete before
|
|
|
- * resetting the device
|
|
|
- */
|
|
|
- msleep(10);
|
|
|
-
|
|
|
- ctrl = er32(CTRL);
|
|
|
-
|
|
|
- /* Must reset the PHY before resetting the MAC */
|
|
|
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
- ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
|
|
|
- msleep(5);
|
|
|
- }
|
|
|
-
|
|
|
- /* Issue a global reset to the MAC. This will reset the chip's
|
|
|
- * transmit, receive, DMA, and link units. It will not effect
|
|
|
- * the current PCI configuration. The global reset bit is self-
|
|
|
- * clearing, and should clear within a microsecond.
|
|
|
- */
|
|
|
- DEBUGOUT("Issuing a global reset to MAC\n");
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82544:
|
|
|
- case e1000_82540:
|
|
|
- case e1000_82545:
|
|
|
- case e1000_82546:
|
|
|
- case e1000_82541:
|
|
|
- case e1000_82541_rev_2:
|
|
|
- /* These controllers can't ack the 64-bit write when issuing the
|
|
|
- * reset, so use IO-mapping as a workaround to issue the reset */
|
|
|
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
|
|
- break;
|
|
|
- case e1000_82545_rev_3:
|
|
|
- case e1000_82546_rev_3:
|
|
|
- /* Reset is performed on a shadow of the control register */
|
|
|
- ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
|
|
|
- break;
|
|
|
- default:
|
|
|
- ew32(CTRL, (ctrl | E1000_CTRL_RST));
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* After MAC reset, force reload of EEPROM to restore power-on settings to
|
|
|
- * device. Later controllers reload the EEPROM automatically, so just wait
|
|
|
- * for reload to complete.
|
|
|
- */
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- case e1000_82543:
|
|
|
- case e1000_82544:
|
|
|
- /* Wait for reset to complete */
|
|
|
- udelay(10);
|
|
|
- ctrl_ext = er32(CTRL_EXT);
|
|
|
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
|
- ew32(CTRL_EXT, ctrl_ext);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- /* Wait for EEPROM reload */
|
|
|
- msleep(2);
|
|
|
- break;
|
|
|
- case e1000_82541:
|
|
|
- case e1000_82541_rev_2:
|
|
|
- case e1000_82547:
|
|
|
- case e1000_82547_rev_2:
|
|
|
- /* Wait for EEPROM reload */
|
|
|
- msleep(20);
|
|
|
- break;
|
|
|
- default:
|
|
|
- /* Auto read done will delay 5ms or poll based on mac type */
|
|
|
- ret_val = e1000_get_auto_rd_done(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* Disable HW ARPs on ASF enabled adapters */
|
|
|
- if (hw->mac_type >= e1000_82540) {
|
|
|
- manc = er32(MANC);
|
|
|
- manc &= ~(E1000_MANC_ARP_EN);
|
|
|
- ew32(MANC, manc);
|
|
|
- }
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
- e1000_phy_init_script(hw);
|
|
|
-
|
|
|
- /* Configure activity LED after PHY reset */
|
|
|
- led_ctrl = er32(LEDCTL);
|
|
|
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
|
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
|
- ew32(LEDCTL, led_ctrl);
|
|
|
- }
|
|
|
-
|
|
|
- /* Clear interrupt mask to stop board from generating interrupts */
|
|
|
- DEBUGOUT("Masking off all interrupts\n");
|
|
|
- ew32(IMC, 0xffffffff);
|
|
|
-
|
|
|
- /* Clear any pending interrupt events. */
|
|
|
- icr = er32(ICR);
|
|
|
-
|
|
|
- /* If MWI was previously enabled, reenable it. */
|
|
|
- if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
|
|
|
- e1000_pci_set_mwi(hw);
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 ctrl;
|
|
|
+ u32 ctrl_ext;
|
|
|
+ u32 icr;
|
|
|
+ u32 manc;
|
|
|
+ u32 led_ctrl;
|
|
|
+ s32 ret_val;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_reset_hw");
|
|
|
+
|
|
|
+ /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
|
|
|
+ if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
|
|
+ e1000_pci_clear_mwi(hw);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Clear interrupt mask to stop board from generating interrupts */
|
|
|
+ DEBUGOUT("Masking off all interrupts\n");
|
|
|
+ ew32(IMC, 0xffffffff);
|
|
|
+
|
|
|
+ /* Disable the Transmit and Receive units. Then delay to allow
|
|
|
+ * any pending transactions to complete before we hit the MAC with
|
|
|
+ * the global reset.
|
|
|
+ */
|
|
|
+ ew32(RCTL, 0);
|
|
|
+ ew32(TCTL, E1000_TCTL_PSP);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+
|
|
|
+ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
|
|
|
+ hw->tbi_compatibility_on = false;
|
|
|
+
|
|
|
+ /* Delay to allow any outstanding PCI transactions to complete before
|
|
|
+ * resetting the device
|
|
|
+ */
|
|
|
+ msleep(10);
|
|
|
+
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+
|
|
|
+ /* Must reset the PHY before resetting the MAC */
|
|
|
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
+ ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
|
|
|
+ msleep(5);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Issue a global reset to the MAC. This will reset the chip's
|
|
|
+ * transmit, receive, DMA, and link units. It will not effect
|
|
|
+ * the current PCI configuration. The global reset bit is self-
|
|
|
+ * clearing, and should clear within a microsecond.
|
|
|
+ */
|
|
|
+ DEBUGOUT("Issuing a global reset to MAC\n");
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82544:
|
|
|
+ case e1000_82540:
|
|
|
+ case e1000_82545:
|
|
|
+ case e1000_82546:
|
|
|
+ case e1000_82541:
|
|
|
+ case e1000_82541_rev_2:
|
|
|
+ /* These controllers can't ack the 64-bit write when issuing the
|
|
|
+ * reset, so use IO-mapping as a workaround to issue the reset */
|
|
|
+ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
|
|
+ break;
|
|
|
+ case e1000_82545_rev_3:
|
|
|
+ case e1000_82546_rev_3:
|
|
|
+ /* Reset is performed on a shadow of the control register */
|
|
|
+ ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ ew32(CTRL, (ctrl | E1000_CTRL_RST));
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* After MAC reset, force reload of EEPROM to restore power-on settings to
|
|
|
+ * device. Later controllers reload the EEPROM automatically, so just wait
|
|
|
+ * for reload to complete.
|
|
|
+ */
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ case e1000_82543:
|
|
|
+ case e1000_82544:
|
|
|
+ /* Wait for reset to complete */
|
|
|
+ udelay(10);
|
|
|
+ ctrl_ext = er32(CTRL_EXT);
|
|
|
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
|
+ ew32(CTRL_EXT, ctrl_ext);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ /* Wait for EEPROM reload */
|
|
|
+ msleep(2);
|
|
|
+ break;
|
|
|
+ case e1000_82541:
|
|
|
+ case e1000_82541_rev_2:
|
|
|
+ case e1000_82547:
|
|
|
+ case e1000_82547_rev_2:
|
|
|
+ /* Wait for EEPROM reload */
|
|
|
+ msleep(20);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ /* Auto read done will delay 5ms or poll based on mac type */
|
|
|
+ ret_val = e1000_get_auto_rd_done(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Disable HW ARPs on ASF enabled adapters */
|
|
|
+ if (hw->mac_type >= e1000_82540) {
|
|
|
+ manc = er32(MANC);
|
|
|
+ manc &= ~(E1000_MANC_ARP_EN);
|
|
|
+ ew32(MANC, manc);
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
+ e1000_phy_init_script(hw);
|
|
|
+
|
|
|
+ /* Configure activity LED after PHY reset */
|
|
|
+ led_ctrl = er32(LEDCTL);
|
|
|
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
|
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
|
+ ew32(LEDCTL, led_ctrl);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Clear interrupt mask to stop board from generating interrupts */
|
|
|
+ DEBUGOUT("Masking off all interrupts\n");
|
|
|
+ ew32(IMC, 0xffffffff);
|
|
|
+
|
|
|
+ /* Clear any pending interrupt events. */
|
|
|
+ icr = er32(ICR);
|
|
|
+
|
|
|
+ /* If MWI was previously enabled, reenable it. */
|
|
|
+ if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
+ if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
|
|
|
+ e1000_pci_set_mwi(hw);
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Performs basic configuration of the adapter.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_init_hw: Performs basic configuration of the adapter.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
* Assumes that the controller has previously been reset and is in a
|
|
|
* post-reset uninitialized state. Initializes the receive address registers,
|
|
|
* multicast table, and VLAN filter table. Calls routines to setup link
|
|
|
* configuration and flow control settings. Clears all on-chip counters. Leaves
|
|
|
* the transmit and receive units disabled and uninitialized.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_init_hw(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl;
|
|
|
- u32 i;
|
|
|
- s32 ret_val;
|
|
|
- u32 mta_size;
|
|
|
- u32 ctrl_ext;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_init_hw");
|
|
|
-
|
|
|
- /* Initialize Identification LED */
|
|
|
- ret_val = e1000_id_led_init(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Initializing Identification LED\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* Set the media type and TBI compatibility */
|
|
|
- e1000_set_media_type(hw);
|
|
|
-
|
|
|
- /* Disabling VLAN filtering. */
|
|
|
- DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
|
- if (hw->mac_type < e1000_82545_rev_3)
|
|
|
- ew32(VET, 0);
|
|
|
- e1000_clear_vfta(hw);
|
|
|
-
|
|
|
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
|
|
|
- if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
- DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
|
|
- e1000_pci_clear_mwi(hw);
|
|
|
- ew32(RCTL, E1000_RCTL_RST);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- msleep(5);
|
|
|
- }
|
|
|
-
|
|
|
- /* Setup the receive address. This involves initializing all of the Receive
|
|
|
- * Address Registers (RARs 0 - 15).
|
|
|
- */
|
|
|
- e1000_init_rx_addrs(hw);
|
|
|
-
|
|
|
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
|
|
|
- if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
- ew32(RCTL, 0);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- msleep(1);
|
|
|
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
|
|
|
- e1000_pci_set_mwi(hw);
|
|
|
- }
|
|
|
-
|
|
|
- /* Zero out the Multicast HASH table */
|
|
|
- DEBUGOUT("Zeroing the MTA\n");
|
|
|
- mta_size = E1000_MC_TBL_SIZE;
|
|
|
- for (i = 0; i < mta_size; i++) {
|
|
|
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
|
|
- /* use write flush to prevent Memory Write Block (MWB) from
|
|
|
- * occuring when accessing our register space */
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- }
|
|
|
-
|
|
|
- /* Set the PCI priority bit correctly in the CTRL register. This
|
|
|
- * determines if the adapter gives priority to receives, or if it
|
|
|
- * gives equal priority to transmits and receives. Valid only on
|
|
|
- * 82542 and 82543 silicon.
|
|
|
- */
|
|
|
- if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
|
|
|
- ctrl = er32(CTRL);
|
|
|
- ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
|
|
|
- }
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82545_rev_3:
|
|
|
- case e1000_82546_rev_3:
|
|
|
- break;
|
|
|
- default:
|
|
|
- /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
|
|
|
- if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048)
|
|
|
- e1000_pcix_set_mmrbc(hw, 2048);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* Call a subroutine to configure the link and setup flow control. */
|
|
|
- ret_val = e1000_setup_link(hw);
|
|
|
-
|
|
|
- /* Set the transmit descriptor write-back policy */
|
|
|
- if (hw->mac_type > e1000_82544) {
|
|
|
- ctrl = er32(TXDCTL);
|
|
|
- ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
|
- ew32(TXDCTL, ctrl);
|
|
|
- }
|
|
|
-
|
|
|
- /* Clear all of the statistics registers (clear on read). It is
|
|
|
- * important that we do this after we have tried to establish link
|
|
|
- * because the symbol error count will increment wildly if there
|
|
|
- * is no link.
|
|
|
- */
|
|
|
- e1000_clear_hw_cntrs(hw);
|
|
|
-
|
|
|
- if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
|
|
|
- hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
|
|
|
- ctrl_ext = er32(CTRL_EXT);
|
|
|
- /* Relaxed ordering must be disabled to avoid a parity
|
|
|
- * error crash in a PCI slot. */
|
|
|
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
|
|
|
- ew32(CTRL_EXT, ctrl_ext);
|
|
|
- }
|
|
|
-
|
|
|
- return ret_val;
|
|
|
+ u32 ctrl;
|
|
|
+ u32 i;
|
|
|
+ s32 ret_val;
|
|
|
+ u32 mta_size;
|
|
|
+ u32 ctrl_ext;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_init_hw");
|
|
|
+
|
|
|
+ /* Initialize Identification LED */
|
|
|
+ ret_val = e1000_id_led_init(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Initializing Identification LED\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Set the media type and TBI compatibility */
|
|
|
+ e1000_set_media_type(hw);
|
|
|
+
|
|
|
+ /* Disabling VLAN filtering. */
|
|
|
+ DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
|
+ if (hw->mac_type < e1000_82545_rev_3)
|
|
|
+ ew32(VET, 0);
|
|
|
+ e1000_clear_vfta(hw);
|
|
|
+
|
|
|
+ /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
|
|
|
+ if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
+ DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
|
|
+ e1000_pci_clear_mwi(hw);
|
|
|
+ ew32(RCTL, E1000_RCTL_RST);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ msleep(5);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Setup the receive address. This involves initializing all of the Receive
|
|
|
+ * Address Registers (RARs 0 - 15).
|
|
|
+ */
|
|
|
+ e1000_init_rx_addrs(hw);
|
|
|
+
|
|
|
+ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
|
|
|
+ if (hw->mac_type == e1000_82542_rev2_0) {
|
|
|
+ ew32(RCTL, 0);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ msleep(1);
|
|
|
+ if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
|
|
|
+ e1000_pci_set_mwi(hw);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Zero out the Multicast HASH table */
|
|
|
+ DEBUGOUT("Zeroing the MTA\n");
|
|
|
+ mta_size = E1000_MC_TBL_SIZE;
|
|
|
+ for (i = 0; i < mta_size; i++) {
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
|
|
+ /* use write flush to prevent Memory Write Block (MWB) from
|
|
|
+ * occurring when accessing our register space */
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Set the PCI priority bit correctly in the CTRL register. This
|
|
|
+ * determines if the adapter gives priority to receives, or if it
|
|
|
+ * gives equal priority to transmits and receives. Valid only on
|
|
|
+ * 82542 and 82543 silicon.
|
|
|
+ */
|
|
|
+ if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+ ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82545_rev_3:
|
|
|
+ case e1000_82546_rev_3:
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
|
|
|
+ if (hw->bus_type == e1000_bus_type_pcix
|
|
|
+ && e1000_pcix_get_mmrbc(hw) > 2048)
|
|
|
+ e1000_pcix_set_mmrbc(hw, 2048);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Call a subroutine to configure the link and setup flow control. */
|
|
|
+ ret_val = e1000_setup_link(hw);
|
|
|
+
|
|
|
+ /* Set the transmit descriptor write-back policy */
|
|
|
+ if (hw->mac_type > e1000_82544) {
|
|
|
+ ctrl = er32(TXDCTL);
|
|
|
+ ctrl =
|
|
|
+ (ctrl & ~E1000_TXDCTL_WTHRESH) |
|
|
|
+ E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
|
+ ew32(TXDCTL, ctrl);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Clear all of the statistics registers (clear on read). It is
|
|
|
+ * important that we do this after we have tried to establish link
|
|
|
+ * because the symbol error count will increment wildly if there
|
|
|
+ * is no link.
|
|
|
+ */
|
|
|
+ e1000_clear_hw_cntrs(hw);
|
|
|
+
|
|
|
+ if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
|
|
|
+ hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
|
|
|
+ ctrl_ext = er32(CTRL_EXT);
|
|
|
+ /* Relaxed ordering must be disabled to avoid a parity
|
|
|
+ * error crash in a PCI slot. */
|
|
|
+ ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
|
|
|
+ ew32(CTRL_EXT, ctrl_ext);
|
|
|
+ }
|
|
|
+
|
|
|
+ return ret_val;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Adjust SERDES output amplitude based on EEPROM setting.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code.
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
|
|
|
+ * @hw: Struct containing variables accessed by shared code.
|
|
|
+ */
|
|
|
static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u16 eeprom_data;
|
|
|
- s32 ret_val;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_adjust_serdes_amplitude");
|
|
|
-
|
|
|
- if (hw->media_type != e1000_media_type_internal_serdes)
|
|
|
- return E1000_SUCCESS;
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82545_rev_3:
|
|
|
- case e1000_82546_rev_3:
|
|
|
- break;
|
|
|
- default:
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
-
|
|
|
- ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
|
|
|
- if (ret_val) {
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- if (eeprom_data != EEPROM_RESERVED_WORD) {
|
|
|
- /* Adjust SERDES output amplitude only. */
|
|
|
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u16 eeprom_data;
|
|
|
+ s32 ret_val;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_adjust_serdes_amplitude");
|
|
|
+
|
|
|
+ if (hw->media_type != e1000_media_type_internal_serdes)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82545_rev_3:
|
|
|
+ case e1000_82546_rev_3:
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
|
|
|
+ &eeprom_data);
|
|
|
+ if (ret_val) {
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (eeprom_data != EEPROM_RESERVED_WORD) {
|
|
|
+ /* Adjust SERDES output amplitude only. */
|
|
|
+ eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Configures flow control and link settings.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_setup_link - Configures flow control and link settings.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
- * Determines which flow control settings to use. Calls the apropriate media-
|
|
|
+ * Determines which flow control settings to use. Calls the appropriate media-
|
|
|
* specific link configuration function. Configures the flow control settings.
|
|
|
* Assuming the adapter has a valid link partner, a valid link should be
|
|
|
* established. Assumes the hardware has previously been reset and the
|
|
|
* transmitter and receiver are not enabled.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_setup_link(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl_ext;
|
|
|
- s32 ret_val;
|
|
|
- u16 eeprom_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_setup_link");
|
|
|
-
|
|
|
- /* Read and store word 0x0F of the EEPROM. This word contains bits
|
|
|
- * that determine the hardware's default PAUSE (flow control) mode,
|
|
|
- * a bit that determines whether the HW defaults to enabling or
|
|
|
- * disabling auto-negotiation, and the direction of the
|
|
|
- * SW defined pins. If there is no SW over-ride of the flow
|
|
|
- * control setting, then the variable hw->fc will
|
|
|
- * be initialized based on a value in the EEPROM.
|
|
|
- */
|
|
|
- if (hw->fc == E1000_FC_DEFAULT) {
|
|
|
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
|
|
|
- 1, &eeprom_data);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("EEPROM Read Error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
- if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
|
|
|
- hw->fc = E1000_FC_NONE;
|
|
|
- else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
|
|
|
- EEPROM_WORD0F_ASM_DIR)
|
|
|
- hw->fc = E1000_FC_TX_PAUSE;
|
|
|
- else
|
|
|
- hw->fc = E1000_FC_FULL;
|
|
|
- }
|
|
|
-
|
|
|
- /* We want to save off the original Flow Control configuration just
|
|
|
- * in case we get disconnected and then reconnected into a different
|
|
|
- * hub or switch with different Flow Control capabilities.
|
|
|
- */
|
|
|
- if (hw->mac_type == e1000_82542_rev2_0)
|
|
|
- hw->fc &= (~E1000_FC_TX_PAUSE);
|
|
|
-
|
|
|
- if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
|
|
|
- hw->fc &= (~E1000_FC_RX_PAUSE);
|
|
|
-
|
|
|
- hw->original_fc = hw->fc;
|
|
|
-
|
|
|
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
|
|
|
-
|
|
|
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
|
|
|
- * polarity value for the SW controlled pins, and setup the
|
|
|
- * Extended Device Control reg with that info.
|
|
|
- * This is needed because one of the SW controlled pins is used for
|
|
|
- * signal detection. So this should be done before e1000_setup_pcs_link()
|
|
|
- * or e1000_phy_setup() is called.
|
|
|
- */
|
|
|
- if (hw->mac_type == e1000_82543) {
|
|
|
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
|
|
|
- 1, &eeprom_data);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("EEPROM Read Error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
|
|
|
- SWDPIO__EXT_SHIFT);
|
|
|
- ew32(CTRL_EXT, ctrl_ext);
|
|
|
- }
|
|
|
-
|
|
|
- /* Call the necessary subroutine to configure the link. */
|
|
|
- ret_val = (hw->media_type == e1000_media_type_copper) ?
|
|
|
- e1000_setup_copper_link(hw) :
|
|
|
- e1000_setup_fiber_serdes_link(hw);
|
|
|
-
|
|
|
- /* Initialize the flow control address, type, and PAUSE timer
|
|
|
- * registers to their default values. This is done even if flow
|
|
|
- * control is disabled, because it does not hurt anything to
|
|
|
- * initialize these registers.
|
|
|
- */
|
|
|
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
|
|
|
-
|
|
|
- ew32(FCT, FLOW_CONTROL_TYPE);
|
|
|
- ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
|
|
- ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
|
|
-
|
|
|
- ew32(FCTTV, hw->fc_pause_time);
|
|
|
-
|
|
|
- /* Set the flow control receive threshold registers. Normally,
|
|
|
- * these registers will be set to a default threshold that may be
|
|
|
- * adjusted later by the driver's runtime code. However, if the
|
|
|
- * ability to transmit pause frames in not enabled, then these
|
|
|
- * registers will be set to 0.
|
|
|
- */
|
|
|
- if (!(hw->fc & E1000_FC_TX_PAUSE)) {
|
|
|
- ew32(FCRTL, 0);
|
|
|
- ew32(FCRTH, 0);
|
|
|
- } else {
|
|
|
- /* We need to set up the Receive Threshold high and low water marks
|
|
|
- * as well as (optionally) enabling the transmission of XON frames.
|
|
|
- */
|
|
|
- if (hw->fc_send_xon) {
|
|
|
- ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
|
|
|
- ew32(FCRTH, hw->fc_high_water);
|
|
|
- } else {
|
|
|
- ew32(FCRTL, hw->fc_low_water);
|
|
|
- ew32(FCRTH, hw->fc_high_water);
|
|
|
- }
|
|
|
- }
|
|
|
- return ret_val;
|
|
|
-}
|
|
|
+ u32 ctrl_ext;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 eeprom_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_setup_link");
|
|
|
+
|
|
|
+ /* Read and store word 0x0F of the EEPROM. This word contains bits
|
|
|
+ * that determine the hardware's default PAUSE (flow control) mode,
|
|
|
+ * a bit that determines whether the HW defaults to enabling or
|
|
|
+ * disabling auto-negotiation, and the direction of the
|
|
|
+ * SW defined pins. If there is no SW over-ride of the flow
|
|
|
+ * control setting, then the variable hw->fc will
|
|
|
+ * be initialized based on a value in the EEPROM.
|
|
|
+ */
|
|
|
+ if (hw->fc == E1000_FC_DEFAULT) {
|
|
|
+ ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
|
|
|
+ 1, &eeprom_data);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("EEPROM Read Error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+ if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
|
|
|
+ hw->fc = E1000_FC_NONE;
|
|
|
+ else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
|
|
|
+ EEPROM_WORD0F_ASM_DIR)
|
|
|
+ hw->fc = E1000_FC_TX_PAUSE;
|
|
|
+ else
|
|
|
+ hw->fc = E1000_FC_FULL;
|
|
|
+ }
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Sets up link for a fiber based or serdes based adapter
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *
|
|
|
- * Manipulates Physical Coding Sublayer functions in order to configure
|
|
|
- * link. Assumes the hardware has been previously reset and the transmitter
|
|
|
- * and receiver are not enabled.
|
|
|
- *****************************************************************************/
|
|
|
-static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- u32 ctrl;
|
|
|
- u32 status;
|
|
|
- u32 txcw = 0;
|
|
|
- u32 i;
|
|
|
- u32 signal = 0;
|
|
|
- s32 ret_val;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_setup_fiber_serdes_link");
|
|
|
-
|
|
|
- /* On adapters with a MAC newer than 82544, SWDP 1 will be
|
|
|
- * set when the optics detect a signal. On older adapters, it will be
|
|
|
- * cleared when there is a signal. This applies to fiber media only.
|
|
|
- * If we're on serdes media, adjust the output amplitude to value
|
|
|
- * set in the EEPROM.
|
|
|
- */
|
|
|
- ctrl = er32(CTRL);
|
|
|
- if (hw->media_type == e1000_media_type_fiber)
|
|
|
- signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
|
|
-
|
|
|
- ret_val = e1000_adjust_serdes_amplitude(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Take the link out of reset */
|
|
|
- ctrl &= ~(E1000_CTRL_LRST);
|
|
|
-
|
|
|
- /* Adjust VCO speed to improve BER performance */
|
|
|
- ret_val = e1000_set_vco_speed(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- e1000_config_collision_dist(hw);
|
|
|
-
|
|
|
- /* Check for a software override of the flow control settings, and setup
|
|
|
- * the device accordingly. If auto-negotiation is enabled, then software
|
|
|
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
|
|
|
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
|
|
|
- * auto-negotiation is disabled, then software will have to manually
|
|
|
- * configure the two flow control enable bits in the CTRL register.
|
|
|
- *
|
|
|
- * The possible values of the "fc" parameter are:
|
|
|
- * 0: Flow control is completely disabled
|
|
|
- * 1: Rx flow control is enabled (we can receive pause frames, but
|
|
|
- * not send pause frames).
|
|
|
- * 2: Tx flow control is enabled (we can send pause frames but we do
|
|
|
- * not support receiving pause frames).
|
|
|
- * 3: Both Rx and TX flow control (symmetric) are enabled.
|
|
|
- */
|
|
|
- switch (hw->fc) {
|
|
|
- case E1000_FC_NONE:
|
|
|
- /* Flow control is completely disabled by a software over-ride. */
|
|
|
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
|
|
|
- break;
|
|
|
- case E1000_FC_RX_PAUSE:
|
|
|
- /* RX Flow control is enabled and TX Flow control is disabled by a
|
|
|
- * software over-ride. Since there really isn't a way to advertise
|
|
|
- * that we are capable of RX Pause ONLY, we will advertise that we
|
|
|
- * support both symmetric and asymmetric RX PAUSE. Later, we will
|
|
|
- * disable the adapter's ability to send PAUSE frames.
|
|
|
- */
|
|
|
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
|
- break;
|
|
|
- case E1000_FC_TX_PAUSE:
|
|
|
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
|
|
|
- * software over-ride.
|
|
|
- */
|
|
|
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
|
|
|
- break;
|
|
|
- case E1000_FC_FULL:
|
|
|
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
|
|
|
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
|
- break;
|
|
|
- default:
|
|
|
- DEBUGOUT("Flow control param set incorrectly\n");
|
|
|
- return -E1000_ERR_CONFIG;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* Since auto-negotiation is enabled, take the link out of reset (the link
|
|
|
- * will be in reset, because we previously reset the chip). This will
|
|
|
- * restart auto-negotiation. If auto-neogtiation is successful then the
|
|
|
- * link-up status bit will be set and the flow control enable bits (RFCE
|
|
|
- * and TFCE) will be set according to their negotiated value.
|
|
|
- */
|
|
|
- DEBUGOUT("Auto-negotiation enabled\n");
|
|
|
-
|
|
|
- ew32(TXCW, txcw);
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
-
|
|
|
- hw->txcw = txcw;
|
|
|
- msleep(1);
|
|
|
-
|
|
|
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
|
|
|
- * indication in the Device Status Register. Time-out if a link isn't
|
|
|
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
|
|
|
- * less than 500 milliseconds even if the other end is doing it in SW).
|
|
|
- * For internal serdes, we just assume a signal is present, then poll.
|
|
|
- */
|
|
|
- if (hw->media_type == e1000_media_type_internal_serdes ||
|
|
|
- (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
|
|
|
- DEBUGOUT("Looking for Link\n");
|
|
|
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
|
|
|
- msleep(10);
|
|
|
- status = er32(STATUS);
|
|
|
- if (status & E1000_STATUS_LU) break;
|
|
|
- }
|
|
|
- if (i == (LINK_UP_TIMEOUT / 10)) {
|
|
|
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
|
|
|
- hw->autoneg_failed = 1;
|
|
|
- /* AutoNeg failed to achieve a link, so we'll call
|
|
|
- * e1000_check_for_link. This routine will force the link up if
|
|
|
- * we detect a signal. This will allow us to communicate with
|
|
|
- * non-autonegotiating link partners.
|
|
|
- */
|
|
|
- ret_val = e1000_check_for_link(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error while checking for link\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- hw->autoneg_failed = 0;
|
|
|
- } else {
|
|
|
- hw->autoneg_failed = 0;
|
|
|
- DEBUGOUT("Valid Link Found\n");
|
|
|
- }
|
|
|
- } else {
|
|
|
- DEBUGOUT("No Signal Detected\n");
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ /* We want to save off the original Flow Control configuration just
|
|
|
+ * in case we get disconnected and then reconnected into a different
|
|
|
+ * hub or switch with different Flow Control capabilities.
|
|
|
+ */
|
|
|
+ if (hw->mac_type == e1000_82542_rev2_0)
|
|
|
+ hw->fc &= (~E1000_FC_TX_PAUSE);
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Make sure we have a valid PHY and change PHY mode before link setup.
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
-static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- u32 ctrl;
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_copper_link_preconfig");
|
|
|
-
|
|
|
- ctrl = er32(CTRL);
|
|
|
- /* With 82543, we need to force speed and duplex on the MAC equal to what
|
|
|
- * the PHY speed and duplex configuration is. In addition, we need to
|
|
|
- * perform a hardware reset on the PHY to take it out of reset.
|
|
|
- */
|
|
|
- if (hw->mac_type > e1000_82543) {
|
|
|
- ctrl |= E1000_CTRL_SLU;
|
|
|
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- } else {
|
|
|
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- ret_val = e1000_phy_hw_reset(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* Make sure we have a valid PHY */
|
|
|
- ret_val = e1000_detect_gig_phy(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error, did not detect valid phy.\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
|
|
|
-
|
|
|
- /* Set PHY to class A mode (if necessary) */
|
|
|
- ret_val = e1000_set_phy_mode(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82545_rev_3) ||
|
|
|
- (hw->mac_type == e1000_82546_rev_3)) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
- phy_data |= 0x00000008;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->mac_type <= e1000_82543 ||
|
|
|
- hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
|
|
|
- hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
|
|
|
- hw->phy_reset_disable = false;
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
|
|
|
+ hw->fc &= (~E1000_FC_RX_PAUSE);
|
|
|
|
|
|
+ hw->original_fc = hw->fc;
|
|
|
|
|
|
-/********************************************************************
|
|
|
-* Copper link setup for e1000_phy_igp series.
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-*********************************************************************/
|
|
|
-static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- u32 led_ctrl;
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_copper_link_igp_setup");
|
|
|
-
|
|
|
- if (hw->phy_reset_disable)
|
|
|
- return E1000_SUCCESS;
|
|
|
-
|
|
|
- ret_val = e1000_phy_reset(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Resetting the PHY\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
|
|
|
- msleep(15);
|
|
|
- /* Configure activity LED after PHY reset */
|
|
|
- led_ctrl = er32(LEDCTL);
|
|
|
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
|
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
|
- ew32(LEDCTL, led_ctrl);
|
|
|
-
|
|
|
- /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
|
|
|
- if (hw->phy_type == e1000_phy_igp) {
|
|
|
- /* disable lplu d3 during driver init */
|
|
|
- ret_val = e1000_set_d3_lplu_state(hw, false);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Disabling LPLU D3\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Configure mdi-mdix settings */
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
- hw->dsp_config_state = e1000_dsp_config_disabled;
|
|
|
- /* Force MDI for earlier revs of the IGP PHY */
|
|
|
- phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
|
|
|
- hw->mdix = 1;
|
|
|
-
|
|
|
- } else {
|
|
|
- hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
|
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
|
|
-
|
|
|
- switch (hw->mdix) {
|
|
|
- case 1:
|
|
|
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
|
- break;
|
|
|
- case 0:
|
|
|
- default:
|
|
|
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* set auto-master slave resolution settings */
|
|
|
- if (hw->autoneg) {
|
|
|
- e1000_ms_type phy_ms_setting = hw->master_slave;
|
|
|
-
|
|
|
- if (hw->ffe_config_state == e1000_ffe_config_active)
|
|
|
- hw->ffe_config_state = e1000_ffe_config_enabled;
|
|
|
-
|
|
|
- if (hw->dsp_config_state == e1000_dsp_config_activated)
|
|
|
- hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
|
-
|
|
|
- /* when autonegotiation advertisment is only 1000Mbps then we
|
|
|
- * should disable SmartSpeed and enable Auto MasterSlave
|
|
|
- * resolution as hardware default. */
|
|
|
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
|
|
|
- /* Disable SmartSpeed */
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
- phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- /* Set auto Master/Slave resolution process */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- phy_data &= ~CR_1000T_MS_ENABLE;
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* load defaults for future use */
|
|
|
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
|
|
|
- ((phy_data & CR_1000T_MS_VALUE) ?
|
|
|
- e1000_ms_force_master :
|
|
|
- e1000_ms_force_slave) :
|
|
|
- e1000_ms_auto;
|
|
|
-
|
|
|
- switch (phy_ms_setting) {
|
|
|
- case e1000_ms_force_master:
|
|
|
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
|
|
|
- break;
|
|
|
- case e1000_ms_force_slave:
|
|
|
- phy_data |= CR_1000T_MS_ENABLE;
|
|
|
- phy_data &= ~(CR_1000T_MS_VALUE);
|
|
|
- break;
|
|
|
- case e1000_ms_auto:
|
|
|
- phy_data &= ~CR_1000T_MS_ENABLE;
|
|
|
- default:
|
|
|
- break;
|
|
|
- }
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
|
|
|
|
|
|
-/********************************************************************
|
|
|
-* Copper link setup for e1000_phy_m88 series.
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-*********************************************************************/
|
|
|
-static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_copper_link_mgp_setup");
|
|
|
-
|
|
|
- if (hw->phy_reset_disable)
|
|
|
- return E1000_SUCCESS;
|
|
|
-
|
|
|
- /* Enable CRS on TX. This must be set for half-duplex operation. */
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
|
-
|
|
|
- /* Options:
|
|
|
- * MDI/MDI-X = 0 (default)
|
|
|
- * 0 - Auto for all speeds
|
|
|
- * 1 - MDI mode
|
|
|
- * 2 - MDI-X mode
|
|
|
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
|
|
- */
|
|
|
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
|
-
|
|
|
- switch (hw->mdix) {
|
|
|
- case 1:
|
|
|
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
|
|
|
- break;
|
|
|
- case 3:
|
|
|
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
|
|
|
- break;
|
|
|
- case 0:
|
|
|
- default:
|
|
|
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- /* Options:
|
|
|
- * disable_polarity_correction = 0 (default)
|
|
|
- * Automatic Correction for Reversed Cable Polarity
|
|
|
- * 0 - Disabled
|
|
|
- * 1 - Enabled
|
|
|
- */
|
|
|
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
|
|
- if (hw->disable_polarity_correction == 1)
|
|
|
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (hw->phy_revision < M88E1011_I_REV_4) {
|
|
|
- /* Force TX_CLK in the Extended PHY Specific Control Register
|
|
|
- * to 25MHz clock.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
-
|
|
|
- if ((hw->phy_revision == E1000_REVISION_2) &&
|
|
|
- (hw->phy_id == M88E1111_I_PHY_ID)) {
|
|
|
- /* Vidalia Phy, set the downshift counter to 5x */
|
|
|
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
|
|
|
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
|
|
|
- ret_val = e1000_write_phy_reg(hw,
|
|
|
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- } else {
|
|
|
- /* Configure Master and Slave downshift values */
|
|
|
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
|
|
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
|
|
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
|
|
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
|
|
- ret_val = e1000_write_phy_reg(hw,
|
|
|
- M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* SW Reset the PHY so all changes take effect */
|
|
|
- ret_val = e1000_phy_reset(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Resetting the PHY\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ /* Take the 4 bits from EEPROM word 0x0F that determine the initial
|
|
|
+ * polarity value for the SW controlled pins, and setup the
|
|
|
+ * Extended Device Control reg with that info.
|
|
|
+ * This is needed because one of the SW controlled pins is used for
|
|
|
+ * signal detection. So this should be done before e1000_setup_pcs_link()
|
|
|
+ * or e1000_phy_setup() is called.
|
|
|
+ */
|
|
|
+ if (hw->mac_type == e1000_82543) {
|
|
|
+ ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
|
|
|
+ 1, &eeprom_data);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("EEPROM Read Error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+ ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
|
|
|
+ SWDPIO__EXT_SHIFT);
|
|
|
+ ew32(CTRL_EXT, ctrl_ext);
|
|
|
+ }
|
|
|
|
|
|
-/********************************************************************
|
|
|
-* Setup auto-negotiation and flow control advertisements,
|
|
|
-* and then perform auto-negotiation.
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-*********************************************************************/
|
|
|
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_copper_link_autoneg");
|
|
|
-
|
|
|
- /* Perform some bounds checking on the hw->autoneg_advertised
|
|
|
- * parameter. If this variable is zero, then set it to the default.
|
|
|
- */
|
|
|
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
-
|
|
|
- /* If autoneg_advertised is zero, we assume it was not defaulted
|
|
|
- * by the calling code so we set to advertise full capability.
|
|
|
- */
|
|
|
- if (hw->autoneg_advertised == 0)
|
|
|
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
-
|
|
|
- DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
|
|
|
- ret_val = e1000_phy_setup_autoneg(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Setting up Auto-Negotiation\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- DEBUGOUT("Restarting Auto-Neg\n");
|
|
|
-
|
|
|
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
|
|
- * the Auto Neg Restart bit in the PHY control register.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Does the user want to wait for Auto-Neg to complete here, or
|
|
|
- * check at a later time (for example, callback routine).
|
|
|
- */
|
|
|
- if (hw->wait_autoneg_complete) {
|
|
|
- ret_val = e1000_wait_autoneg(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error while waiting for autoneg to complete\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- hw->get_link_status = true;
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ /* Call the necessary subroutine to configure the link. */
|
|
|
+ ret_val = (hw->media_type == e1000_media_type_copper) ?
|
|
|
+ e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Config the MAC and the PHY after link is up.
|
|
|
-* 1) Set up the MAC to the current PHY speed/duplex
|
|
|
-* if we are on 82543. If we
|
|
|
-* are on newer silicon, we only need to configure
|
|
|
-* collision distance in the Transmit Control Register.
|
|
|
-* 2) Set up flow control on the MAC to that established with
|
|
|
-* the link partner.
|
|
|
-* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
-static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- s32 ret_val;
|
|
|
- DEBUGFUNC("e1000_copper_link_postconfig");
|
|
|
-
|
|
|
- if (hw->mac_type >= e1000_82544) {
|
|
|
- e1000_config_collision_dist(hw);
|
|
|
- } else {
|
|
|
- ret_val = e1000_config_mac_to_phy(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error configuring MAC to PHY settings\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
- ret_val = e1000_config_fc_after_link_up(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Configuring Flow Control\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* Config DSP to improve Giga link quality */
|
|
|
- if (hw->phy_type == e1000_phy_igp) {
|
|
|
- ret_val = e1000_config_dsp_after_link_change(hw, true);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Configuring DSP after link up\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ /* Initialize the flow control address, type, and PAUSE timer
|
|
|
+ * registers to their default values. This is done even if flow
|
|
|
+ * control is disabled, because it does not hurt anything to
|
|
|
+ * initialize these registers.
|
|
|
+ */
|
|
|
+ DEBUGOUT
|
|
|
+ ("Initializing the Flow Control address, type and timer regs\n");
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Detects which PHY is present and setup the speed and duplex
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
-static s32 e1000_setup_copper_link(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- s32 ret_val;
|
|
|
- u16 i;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_setup_copper_link");
|
|
|
-
|
|
|
- /* Check if it is a valid PHY and set PHY mode if necessary. */
|
|
|
- ret_val = e1000_copper_link_preconfig(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (hw->phy_type == e1000_phy_igp) {
|
|
|
- ret_val = e1000_copper_link_igp_setup(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- } else if (hw->phy_type == e1000_phy_m88) {
|
|
|
- ret_val = e1000_copper_link_mgp_setup(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->autoneg) {
|
|
|
- /* Setup autoneg and flow control advertisement
|
|
|
- * and perform autonegotiation */
|
|
|
- ret_val = e1000_copper_link_autoneg(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- } else {
|
|
|
- /* PHY will be set to 10H, 10F, 100H,or 100F
|
|
|
- * depending on value from forced_speed_duplex. */
|
|
|
- DEBUGOUT("Forcing speed and duplex\n");
|
|
|
- ret_val = e1000_phy_force_speed_duplex(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Forcing Speed and Duplex\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Check link status. Wait up to 100 microseconds for link to become
|
|
|
- * valid.
|
|
|
- */
|
|
|
- for (i = 0; i < 10; i++) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (phy_data & MII_SR_LINK_STATUS) {
|
|
|
- /* Config the MAC and PHY after link is up */
|
|
|
- ret_val = e1000_copper_link_postconfig(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- DEBUGOUT("Valid link established!!!\n");
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
- udelay(10);
|
|
|
- }
|
|
|
-
|
|
|
- DEBUGOUT("Unable to establish link!!!\n");
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ ew32(FCT, FLOW_CONTROL_TYPE);
|
|
|
+ ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
|
|
+ ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Configures PHY autoneg and flow control advertisement settings
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- s32 ret_val;
|
|
|
- u16 mii_autoneg_adv_reg;
|
|
|
- u16 mii_1000t_ctrl_reg;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_setup_autoneg");
|
|
|
-
|
|
|
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Read the MII 1000Base-T Control Register (Address 9). */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Need to parse both autoneg_advertised and fc and set up
|
|
|
- * the appropriate PHY registers. First we will parse for
|
|
|
- * autoneg_advertised software override. Since we can advertise
|
|
|
- * a plethora of combinations, we need to check each bit
|
|
|
- * individually.
|
|
|
- */
|
|
|
-
|
|
|
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
|
|
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
|
|
|
- * the 1000Base-T Control Register (Address 9).
|
|
|
- */
|
|
|
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
|
|
|
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
|
|
|
-
|
|
|
- DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
|
|
|
-
|
|
|
- /* Do we want to advertise 10 Mb Half Duplex? */
|
|
|
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
|
|
|
- DEBUGOUT("Advertise 10mb Half duplex\n");
|
|
|
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
|
|
|
- }
|
|
|
-
|
|
|
- /* Do we want to advertise 10 Mb Full Duplex? */
|
|
|
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
|
|
|
- DEBUGOUT("Advertise 10mb Full duplex\n");
|
|
|
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
|
|
|
- }
|
|
|
-
|
|
|
- /* Do we want to advertise 100 Mb Half Duplex? */
|
|
|
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
|
|
|
- DEBUGOUT("Advertise 100mb Half duplex\n");
|
|
|
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
|
|
|
- }
|
|
|
-
|
|
|
- /* Do we want to advertise 100 Mb Full Duplex? */
|
|
|
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
|
|
|
- DEBUGOUT("Advertise 100mb Full duplex\n");
|
|
|
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
|
|
|
- }
|
|
|
-
|
|
|
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
|
|
|
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
|
|
|
- DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
|
|
|
- }
|
|
|
-
|
|
|
- /* Do we want to advertise 1000 Mb Full Duplex? */
|
|
|
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
|
|
|
- DEBUGOUT("Advertise 1000mb Full duplex\n");
|
|
|
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
|
|
- }
|
|
|
-
|
|
|
- /* Check for a software override of the flow control settings, and
|
|
|
- * setup the PHY advertisement registers accordingly. If
|
|
|
- * auto-negotiation is enabled, then software will have to set the
|
|
|
- * "PAUSE" bits to the correct value in the Auto-Negotiation
|
|
|
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
|
|
|
- *
|
|
|
- * The possible values of the "fc" parameter are:
|
|
|
- * 0: Flow control is completely disabled
|
|
|
- * 1: Rx flow control is enabled (we can receive pause frames
|
|
|
- * but not send pause frames).
|
|
|
- * 2: Tx flow control is enabled (we can send pause frames
|
|
|
- * but we do not support receiving pause frames).
|
|
|
- * 3: Both Rx and TX flow control (symmetric) are enabled.
|
|
|
- * other: No software override. The flow control configuration
|
|
|
- * in the EEPROM is used.
|
|
|
- */
|
|
|
- switch (hw->fc) {
|
|
|
- case E1000_FC_NONE: /* 0 */
|
|
|
- /* Flow control (RX & TX) is completely disabled by a
|
|
|
- * software over-ride.
|
|
|
- */
|
|
|
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
|
- break;
|
|
|
- case E1000_FC_RX_PAUSE: /* 1 */
|
|
|
- /* RX Flow control is enabled, and TX Flow control is
|
|
|
- * disabled, by a software over-ride.
|
|
|
- */
|
|
|
- /* Since there really isn't a way to advertise that we are
|
|
|
- * capable of RX Pause ONLY, we will advertise that we
|
|
|
- * support both symmetric and asymmetric RX PAUSE. Later
|
|
|
- * (in e1000_config_fc_after_link_up) we will disable the
|
|
|
- *hw's ability to send PAUSE frames.
|
|
|
- */
|
|
|
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
|
- break;
|
|
|
- case E1000_FC_TX_PAUSE: /* 2 */
|
|
|
- /* TX Flow control is enabled, and RX Flow control is
|
|
|
- * disabled, by a software over-ride.
|
|
|
- */
|
|
|
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
|
|
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
|
|
- break;
|
|
|
- case E1000_FC_FULL: /* 3 */
|
|
|
- /* Flow control (both RX and TX) is enabled by a software
|
|
|
- * over-ride.
|
|
|
- */
|
|
|
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
|
- break;
|
|
|
- default:
|
|
|
- DEBUGOUT("Flow control param set incorrectly\n");
|
|
|
- return -E1000_ERR_CONFIG;
|
|
|
- }
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ ew32(FCTTV, hw->fc_pause_time);
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Force PHY speed and duplex settings to hw->forced_speed_duplex
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- u32 ctrl;
|
|
|
- s32 ret_val;
|
|
|
- u16 mii_ctrl_reg;
|
|
|
- u16 mii_status_reg;
|
|
|
- u16 phy_data;
|
|
|
- u16 i;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_force_speed_duplex");
|
|
|
-
|
|
|
- /* Turn off Flow control if we are forcing speed and duplex. */
|
|
|
- hw->fc = E1000_FC_NONE;
|
|
|
-
|
|
|
- DEBUGOUT1("hw->fc = %d\n", hw->fc);
|
|
|
-
|
|
|
- /* Read the Device Control Register. */
|
|
|
- ctrl = er32(CTRL);
|
|
|
-
|
|
|
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
|
|
|
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
|
- ctrl &= ~(DEVICE_SPEED_MASK);
|
|
|
-
|
|
|
- /* Clear the Auto Speed Detect Enable bit. */
|
|
|
- ctrl &= ~E1000_CTRL_ASDE;
|
|
|
-
|
|
|
- /* Read the MII Control Register. */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* We need to disable autoneg in order to force link and duplex. */
|
|
|
-
|
|
|
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
|
|
|
-
|
|
|
- /* Are we forcing Full or Half Duplex? */
|
|
|
- if (hw->forced_speed_duplex == e1000_100_full ||
|
|
|
- hw->forced_speed_duplex == e1000_10_full) {
|
|
|
- /* We want to force full duplex so we SET the full duplex bits in the
|
|
|
- * Device and MII Control Registers.
|
|
|
- */
|
|
|
- ctrl |= E1000_CTRL_FD;
|
|
|
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
|
|
|
- DEBUGOUT("Full Duplex\n");
|
|
|
- } else {
|
|
|
- /* We want to force half duplex so we CLEAR the full duplex bits in
|
|
|
- * the Device and MII Control Registers.
|
|
|
- */
|
|
|
- ctrl &= ~E1000_CTRL_FD;
|
|
|
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
|
|
|
- DEBUGOUT("Half Duplex\n");
|
|
|
- }
|
|
|
-
|
|
|
- /* Are we forcing 100Mbps??? */
|
|
|
- if (hw->forced_speed_duplex == e1000_100_full ||
|
|
|
- hw->forced_speed_duplex == e1000_100_half) {
|
|
|
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
|
|
|
- ctrl |= E1000_CTRL_SPD_100;
|
|
|
- mii_ctrl_reg |= MII_CR_SPEED_100;
|
|
|
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
|
|
|
- DEBUGOUT("Forcing 100mb ");
|
|
|
- } else {
|
|
|
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
|
|
|
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
|
|
|
- mii_ctrl_reg |= MII_CR_SPEED_10;
|
|
|
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
|
|
|
- DEBUGOUT("Forcing 10mb ");
|
|
|
- }
|
|
|
-
|
|
|
- e1000_config_collision_dist(hw);
|
|
|
-
|
|
|
- /* Write the configured values back to the Device Control Reg. */
|
|
|
- ew32(CTRL, ctrl);
|
|
|
-
|
|
|
- if (hw->phy_type == e1000_phy_m88) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
|
|
- * forced whenever speed are duplex are forced.
|
|
|
- */
|
|
|
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
|
|
|
-
|
|
|
- /* Need to reset the PHY or these changes will be ignored */
|
|
|
- mii_ctrl_reg |= MII_CR_RESET;
|
|
|
-
|
|
|
- } else {
|
|
|
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
|
|
|
- * forced whenever speed or duplex are forced.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
|
|
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* Write back the modified PHY MII control register. */
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- udelay(1);
|
|
|
-
|
|
|
- /* The wait_autoneg_complete flag may be a little misleading here.
|
|
|
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
|
|
|
- * But we do want to delay for a period while forcing only so we
|
|
|
- * don't generate false No Link messages. So we will wait here
|
|
|
- * only if the user has set wait_autoneg_complete to 1, which is
|
|
|
- * the default.
|
|
|
- */
|
|
|
- if (hw->wait_autoneg_complete) {
|
|
|
- /* We will wait for autoneg to complete. */
|
|
|
- DEBUGOUT("Waiting for forced speed/duplex link.\n");
|
|
|
- mii_status_reg = 0;
|
|
|
-
|
|
|
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
|
|
|
- for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
|
|
|
- * to be set.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
|
|
|
- msleep(100);
|
|
|
- }
|
|
|
- if ((i == 0) &&
|
|
|
- (hw->phy_type == e1000_phy_m88)) {
|
|
|
- /* We didn't get link. Reset the DSP and wait again for link. */
|
|
|
- ret_val = e1000_phy_reset_dsp(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error Resetting PHY DSP\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
- /* This loop will early-out if the link condition has been met. */
|
|
|
- for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
|
|
|
- msleep(100);
|
|
|
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
|
|
|
- * to be set.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->phy_type == e1000_phy_m88) {
|
|
|
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
|
|
|
- * Extended PHY Specific Control Register to 25MHz clock. This value
|
|
|
- * defaults back to a 2.5MHz clock when the PHY is reset.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* In addition, because of the s/w reset above, we need to enable CRS on
|
|
|
- * TX. This must be set for both full and half duplex operation.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
|
|
|
- (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
|
|
|
- hw->forced_speed_duplex == e1000_10_half)) {
|
|
|
- ret_val = e1000_polarity_reversal_workaround(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ /* Set the flow control receive threshold registers. Normally,
|
|
|
+ * these registers will be set to a default threshold that may be
|
|
|
+ * adjusted later by the driver's runtime code. However, if the
|
|
|
+ * ability to transmit pause frames in not enabled, then these
|
|
|
+ * registers will be set to 0.
|
|
|
+ */
|
|
|
+ if (!(hw->fc & E1000_FC_TX_PAUSE)) {
|
|
|
+ ew32(FCRTL, 0);
|
|
|
+ ew32(FCRTH, 0);
|
|
|
+ } else {
|
|
|
+ /* We need to set up the Receive Threshold high and low water marks
|
|
|
+ * as well as (optionally) enabling the transmission of XON frames.
|
|
|
+ */
|
|
|
+ if (hw->fc_send_xon) {
|
|
|
+ ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
|
|
|
+ ew32(FCRTH, hw->fc_high_water);
|
|
|
+ } else {
|
|
|
+ ew32(FCRTL, hw->fc_low_water);
|
|
|
+ ew32(FCRTH, hw->fc_high_water);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return ret_val;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Sets the collision distance in the Transmit Control register
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-*
|
|
|
-* Link should have been established previously. Reads the speed and duplex
|
|
|
-* information from the Device Status register.
|
|
|
-******************************************************************************/
|
|
|
-void e1000_config_collision_dist(struct e1000_hw *hw)
|
|
|
+/**
|
|
|
+ * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Manipulates Physical Coding Sublayer functions in order to configure
|
|
|
+ * link. Assumes the hardware has been previously reset and the transmitter
|
|
|
+ * and receiver are not enabled.
|
|
|
+ */
|
|
|
+static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 tctl, coll_dist;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_config_collision_dist");
|
|
|
+ u32 ctrl;
|
|
|
+ u32 status;
|
|
|
+ u32 txcw = 0;
|
|
|
+ u32 i;
|
|
|
+ u32 signal = 0;
|
|
|
+ s32 ret_val;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_setup_fiber_serdes_link");
|
|
|
+
|
|
|
+ /* On adapters with a MAC newer than 82544, SWDP 1 will be
|
|
|
+ * set when the optics detect a signal. On older adapters, it will be
|
|
|
+ * cleared when there is a signal. This applies to fiber media only.
|
|
|
+ * If we're on serdes media, adjust the output amplitude to value
|
|
|
+ * set in the EEPROM.
|
|
|
+ */
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+ if (hw->media_type == e1000_media_type_fiber)
|
|
|
+ signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
|
|
+
|
|
|
+ ret_val = e1000_adjust_serdes_amplitude(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Take the link out of reset */
|
|
|
+ ctrl &= ~(E1000_CTRL_LRST);
|
|
|
+
|
|
|
+ /* Adjust VCO speed to improve BER performance */
|
|
|
+ ret_val = e1000_set_vco_speed(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ e1000_config_collision_dist(hw);
|
|
|
+
|
|
|
+ /* Check for a software override of the flow control settings, and setup
|
|
|
+ * the device accordingly. If auto-negotiation is enabled, then software
|
|
|
+ * will have to set the "PAUSE" bits to the correct value in the Tranmsit
|
|
|
+ * Config Word Register (TXCW) and re-start auto-negotiation. However, if
|
|
|
+ * auto-negotiation is disabled, then software will have to manually
|
|
|
+ * configure the two flow control enable bits in the CTRL register.
|
|
|
+ *
|
|
|
+ * The possible values of the "fc" parameter are:
|
|
|
+ * 0: Flow control is completely disabled
|
|
|
+ * 1: Rx flow control is enabled (we can receive pause frames, but
|
|
|
+ * not send pause frames).
|
|
|
+ * 2: Tx flow control is enabled (we can send pause frames but we do
|
|
|
+ * not support receiving pause frames).
|
|
|
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
|
|
|
+ */
|
|
|
+ switch (hw->fc) {
|
|
|
+ case E1000_FC_NONE:
|
|
|
+ /* Flow control is completely disabled by a software over-ride. */
|
|
|
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
|
|
|
+ break;
|
|
|
+ case E1000_FC_RX_PAUSE:
|
|
|
+ /* RX Flow control is enabled and TX Flow control is disabled by a
|
|
|
+ * software over-ride. Since there really isn't a way to advertise
|
|
|
+ * that we are capable of RX Pause ONLY, we will advertise that we
|
|
|
+ * support both symmetric and asymmetric RX PAUSE. Later, we will
|
|
|
+ * disable the adapter's ability to send PAUSE frames.
|
|
|
+ */
|
|
|
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
|
+ break;
|
|
|
+ case E1000_FC_TX_PAUSE:
|
|
|
+ /* TX Flow control is enabled, and RX Flow control is disabled, by a
|
|
|
+ * software over-ride.
|
|
|
+ */
|
|
|
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
|
|
|
+ break;
|
|
|
+ case E1000_FC_FULL:
|
|
|
+ /* Flow control (both RX and TX) is enabled by a software over-ride. */
|
|
|
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ DEBUGOUT("Flow control param set incorrectly\n");
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ break;
|
|
|
+ }
|
|
|
|
|
|
- if (hw->mac_type < e1000_82543)
|
|
|
- coll_dist = E1000_COLLISION_DISTANCE_82542;
|
|
|
- else
|
|
|
- coll_dist = E1000_COLLISION_DISTANCE;
|
|
|
+ /* Since auto-negotiation is enabled, take the link out of reset (the link
|
|
|
+ * will be in reset, because we previously reset the chip). This will
|
|
|
+ * restart auto-negotiation. If auto-negotiation is successful then the
|
|
|
+ * link-up status bit will be set and the flow control enable bits (RFCE
|
|
|
+ * and TFCE) will be set according to their negotiated value.
|
|
|
+ */
|
|
|
+ DEBUGOUT("Auto-negotiation enabled\n");
|
|
|
|
|
|
- tctl = er32(TCTL);
|
|
|
+ ew32(TXCW, txcw);
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
|
|
|
- tctl &= ~E1000_TCTL_COLD;
|
|
|
- tctl |= coll_dist << E1000_COLD_SHIFT;
|
|
|
+ hw->txcw = txcw;
|
|
|
+ msleep(1);
|
|
|
|
|
|
- ew32(TCTL, tctl);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
+ /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
|
|
|
+ * indication in the Device Status Register. Time-out if a link isn't
|
|
|
+ * seen in 500 milliseconds seconds (Auto-negotiation should complete in
|
|
|
+ * less than 500 milliseconds even if the other end is doing it in SW).
|
|
|
+ * For internal serdes, we just assume a signal is present, then poll.
|
|
|
+ */
|
|
|
+ if (hw->media_type == e1000_media_type_internal_serdes ||
|
|
|
+ (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
|
|
|
+ DEBUGOUT("Looking for Link\n");
|
|
|
+ for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
|
|
|
+ msleep(10);
|
|
|
+ status = er32(STATUS);
|
|
|
+ if (status & E1000_STATUS_LU)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (i == (LINK_UP_TIMEOUT / 10)) {
|
|
|
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
|
|
|
+ hw->autoneg_failed = 1;
|
|
|
+ /* AutoNeg failed to achieve a link, so we'll call
|
|
|
+ * e1000_check_for_link. This routine will force the link up if
|
|
|
+ * we detect a signal. This will allow us to communicate with
|
|
|
+ * non-autonegotiating link partners.
|
|
|
+ */
|
|
|
+ ret_val = e1000_check_for_link(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error while checking for link\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ hw->autoneg_failed = 0;
|
|
|
+ } else {
|
|
|
+ hw->autoneg_failed = 0;
|
|
|
+ DEBUGOUT("Valid Link Found\n");
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ DEBUGOUT("No Signal Detected\n");
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Sets MAC speed and duplex settings to reflect the those in the PHY
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* mii_reg - data to write to the MII control register
|
|
|
-*
|
|
|
-* The contents of the PHY register containing the needed information need to
|
|
|
-* be passed in.
|
|
|
-******************************************************************************/
|
|
|
-static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
|
|
|
+/**
|
|
|
+ * e1000_copper_link_preconfig - early configuration for copper
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Make sure we have a valid PHY and change PHY mode before link setup.
|
|
|
+ */
|
|
|
+static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl;
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_config_mac_to_phy");
|
|
|
-
|
|
|
- /* 82544 or newer MAC, Auto Speed Detection takes care of
|
|
|
- * MAC speed/duplex configuration.*/
|
|
|
- if (hw->mac_type >= e1000_82544)
|
|
|
- return E1000_SUCCESS;
|
|
|
-
|
|
|
- /* Read the Device Control Register and set the bits to Force Speed
|
|
|
- * and Duplex.
|
|
|
- */
|
|
|
- ctrl = er32(CTRL);
|
|
|
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
|
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
|
|
|
-
|
|
|
- /* Set up duplex in the Device Control and Transmit Control
|
|
|
- * registers depending on negotiated values.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (phy_data & M88E1000_PSSR_DPLX)
|
|
|
- ctrl |= E1000_CTRL_FD;
|
|
|
- else
|
|
|
- ctrl &= ~E1000_CTRL_FD;
|
|
|
-
|
|
|
- e1000_config_collision_dist(hw);
|
|
|
-
|
|
|
- /* Set up speed in the Device Control register depending on
|
|
|
- * negotiated values.
|
|
|
- */
|
|
|
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
|
|
|
- ctrl |= E1000_CTRL_SPD_1000;
|
|
|
- else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
|
|
|
- ctrl |= E1000_CTRL_SPD_100;
|
|
|
-
|
|
|
- /* Write the configured values back to the Device Control Reg. */
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 ctrl;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_copper_link_preconfig");
|
|
|
+
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+ /* With 82543, we need to force speed and duplex on the MAC equal to what
|
|
|
+ * the PHY speed and duplex configuration is. In addition, we need to
|
|
|
+ * perform a hardware reset on the PHY to take it out of reset.
|
|
|
+ */
|
|
|
+ if (hw->mac_type > e1000_82543) {
|
|
|
+ ctrl |= E1000_CTRL_SLU;
|
|
|
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ } else {
|
|
|
+ ctrl |=
|
|
|
+ (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ ret_val = e1000_phy_hw_reset(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Make sure we have a valid PHY */
|
|
|
+ ret_val = e1000_detect_gig_phy(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error, did not detect valid phy.\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
|
|
|
+
|
|
|
+ /* Set PHY to class A mode (if necessary) */
|
|
|
+ ret_val = e1000_set_phy_mode(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82545_rev_3) ||
|
|
|
+ (hw->mac_type == e1000_82546_rev_3)) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
+ phy_data |= 0x00000008;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->mac_type <= e1000_82543 ||
|
|
|
+ hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
|
|
|
+ hw->mac_type == e1000_82541_rev_2
|
|
|
+ || hw->mac_type == e1000_82547_rev_2)
|
|
|
+ hw->phy_reset_disable = false;
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Forces the MAC's flow control settings.
|
|
|
+/**
|
|
|
+ * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
+static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ u32 led_ctrl;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_copper_link_igp_setup");
|
|
|
+
|
|
|
+ if (hw->phy_reset_disable)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ ret_val = e1000_phy_reset(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Resetting the PHY\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Wait 15ms for MAC to configure PHY from eeprom settings */
|
|
|
+ msleep(15);
|
|
|
+ /* Configure activity LED after PHY reset */
|
|
|
+ led_ctrl = er32(LEDCTL);
|
|
|
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
|
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
|
+ ew32(LEDCTL, led_ctrl);
|
|
|
+
|
|
|
+ /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
|
|
|
+ if (hw->phy_type == e1000_phy_igp) {
|
|
|
+ /* disable lplu d3 during driver init */
|
|
|
+ ret_val = e1000_set_d3_lplu_state(hw, false);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Disabling LPLU D3\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Configure mdi-mdix settings */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
+ hw->dsp_config_state = e1000_dsp_config_disabled;
|
|
|
+ /* Force MDI for earlier revs of the IGP PHY */
|
|
|
+ phy_data &=
|
|
|
+ ~(IGP01E1000_PSCR_AUTO_MDIX |
|
|
|
+ IGP01E1000_PSCR_FORCE_MDI_MDIX);
|
|
|
+ hw->mdix = 1;
|
|
|
+
|
|
|
+ } else {
|
|
|
+ hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
|
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
|
|
+
|
|
|
+ switch (hw->mdix) {
|
|
|
+ case 1:
|
|
|
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
|
+ break;
|
|
|
+ case 0:
|
|
|
+ default:
|
|
|
+ phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* set auto-master slave resolution settings */
|
|
|
+ if (hw->autoneg) {
|
|
|
+ e1000_ms_type phy_ms_setting = hw->master_slave;
|
|
|
+
|
|
|
+ if (hw->ffe_config_state == e1000_ffe_config_active)
|
|
|
+ hw->ffe_config_state = e1000_ffe_config_enabled;
|
|
|
+
|
|
|
+ if (hw->dsp_config_state == e1000_dsp_config_activated)
|
|
|
+ hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
|
+
|
|
|
+ /* when autonegotiation advertisement is only 1000Mbps then we
|
|
|
+ * should disable SmartSpeed and enable Auto MasterSlave
|
|
|
+ * resolution as hardware default. */
|
|
|
+ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
|
|
|
+ /* Disable SmartSpeed */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ /* Set auto Master/Slave resolution process */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ phy_data &= ~CR_1000T_MS_ENABLE;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* load defaults for future use */
|
|
|
+ hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
|
|
|
+ ((phy_data & CR_1000T_MS_VALUE) ?
|
|
|
+ e1000_ms_force_master :
|
|
|
+ e1000_ms_force_slave) : e1000_ms_auto;
|
|
|
+
|
|
|
+ switch (phy_ms_setting) {
|
|
|
+ case e1000_ms_force_master:
|
|
|
+ phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
|
|
|
+ break;
|
|
|
+ case e1000_ms_force_slave:
|
|
|
+ phy_data |= CR_1000T_MS_ENABLE;
|
|
|
+ phy_data &= ~(CR_1000T_MS_VALUE);
|
|
|
+ break;
|
|
|
+ case e1000_ms_auto:
|
|
|
+ phy_data &= ~CR_1000T_MS_ENABLE;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
+static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_copper_link_mgp_setup");
|
|
|
+
|
|
|
+ if (hw->phy_reset_disable)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
|
+
|
|
|
+ /* Options:
|
|
|
+ * MDI/MDI-X = 0 (default)
|
|
|
+ * 0 - Auto for all speeds
|
|
|
+ * 1 - MDI mode
|
|
|
+ * 2 - MDI-X mode
|
|
|
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
|
|
+ */
|
|
|
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
|
+
|
|
|
+ switch (hw->mdix) {
|
|
|
+ case 1:
|
|
|
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
|
|
|
+ break;
|
|
|
+ case 0:
|
|
|
+ default:
|
|
|
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Options:
|
|
|
+ * disable_polarity_correction = 0 (default)
|
|
|
+ * Automatic Correction for Reversed Cable Polarity
|
|
|
+ * 0 - Disabled
|
|
|
+ * 1 - Enabled
|
|
|
+ */
|
|
|
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
|
|
+ if (hw->disable_polarity_correction == 1)
|
|
|
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (hw->phy_revision < M88E1011_I_REV_4) {
|
|
|
+ /* Force TX_CLK in the Extended PHY Specific Control Register
|
|
|
+ * to 25MHz clock.
|
|
|
+ */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
+
|
|
|
+ if ((hw->phy_revision == E1000_REVISION_2) &&
|
|
|
+ (hw->phy_id == M88E1111_I_PHY_ID)) {
|
|
|
+ /* Vidalia Phy, set the downshift counter to 5x */
|
|
|
+ phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
|
|
|
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
|
|
|
+ ret_val = e1000_write_phy_reg(hw,
|
|
|
+ M88E1000_EXT_PHY_SPEC_CTRL,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ } else {
|
|
|
+ /* Configure Master and Slave downshift values */
|
|
|
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
|
|
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
|
|
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
|
|
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
|
|
+ ret_val = e1000_write_phy_reg(hw,
|
|
|
+ M88E1000_EXT_PHY_SPEC_CTRL,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* SW Reset the PHY so all changes take effect */
|
|
|
+ ret_val = e1000_phy_reset(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Resetting the PHY\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_copper_link_autoneg - setup auto-neg
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+ * Setup auto-negotiation and flow control advertisements,
|
|
|
+ * and then perform auto-negotiation.
|
|
|
+ */
|
|
|
+static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_copper_link_autoneg");
|
|
|
+
|
|
|
+ /* Perform some bounds checking on the hw->autoneg_advertised
|
|
|
+ * parameter. If this variable is zero, then set it to the default.
|
|
|
+ */
|
|
|
+ hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
+
|
|
|
+ /* If autoneg_advertised is zero, we assume it was not defaulted
|
|
|
+ * by the calling code so we set to advertise full capability.
|
|
|
+ */
|
|
|
+ if (hw->autoneg_advertised == 0)
|
|
|
+ hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
+
|
|
|
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
|
|
|
+ ret_val = e1000_phy_setup_autoneg(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ DEBUGOUT("Restarting Auto-Neg\n");
|
|
|
+
|
|
|
+ /* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
|
|
+ * the Auto Neg Restart bit in the PHY control register.
|
|
|
+ */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Does the user want to wait for Auto-Neg to complete here, or
|
|
|
+ * check at a later time (for example, callback routine).
|
|
|
+ */
|
|
|
+ if (hw->wait_autoneg_complete) {
|
|
|
+ ret_val = e1000_wait_autoneg(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT
|
|
|
+ ("Error while waiting for autoneg to complete\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ hw->get_link_status = true;
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_copper_link_postconfig - post link setup
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
+ * Config the MAC and the PHY after link is up.
|
|
|
+ * 1) Set up the MAC to the current PHY speed/duplex
|
|
|
+ * if we are on 82543. If we
|
|
|
+ * are on newer silicon, we only need to configure
|
|
|
+ * collision distance in the Transmit Control Register.
|
|
|
+ * 2) Set up flow control on the MAC to that established with
|
|
|
+ * the link partner.
|
|
|
+ * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
|
|
|
+ */
|
|
|
+static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ s32 ret_val;
|
|
|
+ DEBUGFUNC("e1000_copper_link_postconfig");
|
|
|
+
|
|
|
+ if (hw->mac_type >= e1000_82544) {
|
|
|
+ e1000_config_collision_dist(hw);
|
|
|
+ } else {
|
|
|
+ ret_val = e1000_config_mac_to_phy(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error configuring MAC to PHY settings\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ ret_val = e1000_config_fc_after_link_up(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Configuring Flow Control\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Config DSP to improve Giga link quality */
|
|
|
+ if (hw->phy_type == e1000_phy_igp) {
|
|
|
+ ret_val = e1000_config_dsp_after_link_change(hw, true);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Configuring DSP after link up\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_setup_copper_link - phy/speed/duplex setting
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Detects which PHY is present and sets up the speed and duplex
|
|
|
+ */
|
|
|
+static s32 e1000_setup_copper_link(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ s32 ret_val;
|
|
|
+ u16 i;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_setup_copper_link");
|
|
|
+
|
|
|
+ /* Check if it is a valid PHY and set PHY mode if necessary. */
|
|
|
+ ret_val = e1000_copper_link_preconfig(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_igp) {
|
|
|
+ ret_val = e1000_copper_link_igp_setup(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ } else if (hw->phy_type == e1000_phy_m88) {
|
|
|
+ ret_val = e1000_copper_link_mgp_setup(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->autoneg) {
|
|
|
+ /* Setup autoneg and flow control advertisement
|
|
|
+ * and perform autonegotiation */
|
|
|
+ ret_val = e1000_copper_link_autoneg(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ } else {
|
|
|
+ /* PHY will be set to 10H, 10F, 100H,or 100F
|
|
|
+ * depending on value from forced_speed_duplex. */
|
|
|
+ DEBUGOUT("Forcing speed and duplex\n");
|
|
|
+ ret_val = e1000_phy_force_speed_duplex(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Check link status. Wait up to 100 microseconds for link to become
|
|
|
+ * valid.
|
|
|
+ */
|
|
|
+ for (i = 0; i < 10; i++) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (phy_data & MII_SR_LINK_STATUS) {
|
|
|
+ /* Config the MAC and PHY after link is up */
|
|
|
+ ret_val = e1000_copper_link_postconfig(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ DEBUGOUT("Valid link established!!!\n");
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+ udelay(10);
|
|
|
+ }
|
|
|
+
|
|
|
+ DEBUGOUT("Unable to establish link!!!\n");
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_phy_setup_autoneg - phy settings
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Configures PHY autoneg and flow control advertisement settings
|
|
|
+ */
|
|
|
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ s32 ret_val;
|
|
|
+ u16 mii_autoneg_adv_reg;
|
|
|
+ u16 mii_1000t_ctrl_reg;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_setup_autoneg");
|
|
|
+
|
|
|
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Read the MII 1000Base-T Control Register (Address 9). */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Need to parse both autoneg_advertised and fc and set up
|
|
|
+ * the appropriate PHY registers. First we will parse for
|
|
|
+ * autoneg_advertised software override. Since we can advertise
|
|
|
+ * a plethora of combinations, we need to check each bit
|
|
|
+ * individually.
|
|
|
+ */
|
|
|
+
|
|
|
+ /* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
|
|
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
|
|
|
+ * the 1000Base-T Control Register (Address 9).
|
|
|
+ */
|
|
|
+ mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
|
|
|
+ mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
|
|
|
+
|
|
|
+ DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
|
|
|
+
|
|
|
+ /* Do we want to advertise 10 Mb Half Duplex? */
|
|
|
+ if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
|
|
|
+ DEBUGOUT("Advertise 10mb Half duplex\n");
|
|
|
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Do we want to advertise 10 Mb Full Duplex? */
|
|
|
+ if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
|
|
|
+ DEBUGOUT("Advertise 10mb Full duplex\n");
|
|
|
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Do we want to advertise 100 Mb Half Duplex? */
|
|
|
+ if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
|
|
|
+ DEBUGOUT("Advertise 100mb Half duplex\n");
|
|
|
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Do we want to advertise 100 Mb Full Duplex? */
|
|
|
+ if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
|
|
|
+ DEBUGOUT("Advertise 100mb Full duplex\n");
|
|
|
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
|
|
|
+ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
|
|
|
+ DEBUGOUT
|
|
|
+ ("Advertise 1000mb Half duplex requested, request denied!\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Do we want to advertise 1000 Mb Full Duplex? */
|
|
|
+ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
|
|
|
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
|
|
|
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Check for a software override of the flow control settings, and
|
|
|
+ * setup the PHY advertisement registers accordingly. If
|
|
|
+ * auto-negotiation is enabled, then software will have to set the
|
|
|
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
|
|
|
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
|
|
|
+ *
|
|
|
+ * The possible values of the "fc" parameter are:
|
|
|
+ * 0: Flow control is completely disabled
|
|
|
+ * 1: Rx flow control is enabled (we can receive pause frames
|
|
|
+ * but not send pause frames).
|
|
|
+ * 2: Tx flow control is enabled (we can send pause frames
|
|
|
+ * but we do not support receiving pause frames).
|
|
|
+ * 3: Both Rx and TX flow control (symmetric) are enabled.
|
|
|
+ * other: No software override. The flow control configuration
|
|
|
+ * in the EEPROM is used.
|
|
|
+ */
|
|
|
+ switch (hw->fc) {
|
|
|
+ case E1000_FC_NONE: /* 0 */
|
|
|
+ /* Flow control (RX & TX) is completely disabled by a
|
|
|
+ * software over-ride.
|
|
|
+ */
|
|
|
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
|
+ break;
|
|
|
+ case E1000_FC_RX_PAUSE: /* 1 */
|
|
|
+ /* RX Flow control is enabled, and TX Flow control is
|
|
|
+ * disabled, by a software over-ride.
|
|
|
+ */
|
|
|
+ /* Since there really isn't a way to advertise that we are
|
|
|
+ * capable of RX Pause ONLY, we will advertise that we
|
|
|
+ * support both symmetric and asymmetric RX PAUSE. Later
|
|
|
+ * (in e1000_config_fc_after_link_up) we will disable the
|
|
|
+ *hw's ability to send PAUSE frames.
|
|
|
+ */
|
|
|
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
|
+ break;
|
|
|
+ case E1000_FC_TX_PAUSE: /* 2 */
|
|
|
+ /* TX Flow control is enabled, and RX Flow control is
|
|
|
+ * disabled, by a software over-ride.
|
|
|
+ */
|
|
|
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
|
|
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
|
|
+ break;
|
|
|
+ case E1000_FC_FULL: /* 3 */
|
|
|
+ /* Flow control (both RX and TX) is enabled by a software
|
|
|
+ * over-ride.
|
|
|
+ */
|
|
|
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ DEBUGOUT("Flow control param set incorrectly\n");
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_phy_force_speed_duplex - force link settings
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Force PHY speed and duplex settings to hw->forced_speed_duplex
|
|
|
+ */
|
|
|
+static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ u32 ctrl;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 mii_ctrl_reg;
|
|
|
+ u16 mii_status_reg;
|
|
|
+ u16 phy_data;
|
|
|
+ u16 i;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_force_speed_duplex");
|
|
|
+
|
|
|
+ /* Turn off Flow control if we are forcing speed and duplex. */
|
|
|
+ hw->fc = E1000_FC_NONE;
|
|
|
+
|
|
|
+ DEBUGOUT1("hw->fc = %d\n", hw->fc);
|
|
|
+
|
|
|
+ /* Read the Device Control Register. */
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+
|
|
|
+ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
|
|
|
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
|
+ ctrl &= ~(DEVICE_SPEED_MASK);
|
|
|
+
|
|
|
+ /* Clear the Auto Speed Detect Enable bit. */
|
|
|
+ ctrl &= ~E1000_CTRL_ASDE;
|
|
|
+
|
|
|
+ /* Read the MII Control Register. */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* We need to disable autoneg in order to force link and duplex. */
|
|
|
+
|
|
|
+ mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
|
|
|
+
|
|
|
+ /* Are we forcing Full or Half Duplex? */
|
|
|
+ if (hw->forced_speed_duplex == e1000_100_full ||
|
|
|
+ hw->forced_speed_duplex == e1000_10_full) {
|
|
|
+ /* We want to force full duplex so we SET the full duplex bits in the
|
|
|
+ * Device and MII Control Registers.
|
|
|
+ */
|
|
|
+ ctrl |= E1000_CTRL_FD;
|
|
|
+ mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
|
|
|
+ DEBUGOUT("Full Duplex\n");
|
|
|
+ } else {
|
|
|
+ /* We want to force half duplex so we CLEAR the full duplex bits in
|
|
|
+ * the Device and MII Control Registers.
|
|
|
+ */
|
|
|
+ ctrl &= ~E1000_CTRL_FD;
|
|
|
+ mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
|
|
|
+ DEBUGOUT("Half Duplex\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Are we forcing 100Mbps??? */
|
|
|
+ if (hw->forced_speed_duplex == e1000_100_full ||
|
|
|
+ hw->forced_speed_duplex == e1000_100_half) {
|
|
|
+ /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
|
|
|
+ ctrl |= E1000_CTRL_SPD_100;
|
|
|
+ mii_ctrl_reg |= MII_CR_SPEED_100;
|
|
|
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
|
|
|
+ DEBUGOUT("Forcing 100mb ");
|
|
|
+ } else {
|
|
|
+ /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
|
|
|
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
|
|
|
+ mii_ctrl_reg |= MII_CR_SPEED_10;
|
|
|
+ mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
|
|
|
+ DEBUGOUT("Forcing 10mb ");
|
|
|
+ }
|
|
|
+
|
|
|
+ e1000_config_collision_dist(hw);
|
|
|
+
|
|
|
+ /* Write the configured values back to the Device Control Reg. */
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_m88) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
|
|
|
+ * forced whenever speed are duplex are forced.
|
|
|
+ */
|
|
|
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
|
|
|
+
|
|
|
+ /* Need to reset the PHY or these changes will be ignored */
|
|
|
+ mii_ctrl_reg |= MII_CR_RESET;
|
|
|
+
|
|
|
+ /* Disable MDI-X support for 10/100 */
|
|
|
+ } else {
|
|
|
+ /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
|
|
|
+ * forced whenever speed or duplex are forced.
|
|
|
+ */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
|
|
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Write back the modified PHY MII control register. */
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ udelay(1);
|
|
|
+
|
|
|
+ /* The wait_autoneg_complete flag may be a little misleading here.
|
|
|
+ * Since we are forcing speed and duplex, Auto-Neg is not enabled.
|
|
|
+ * But we do want to delay for a period while forcing only so we
|
|
|
+ * don't generate false No Link messages. So we will wait here
|
|
|
+ * only if the user has set wait_autoneg_complete to 1, which is
|
|
|
+ * the default.
|
|
|
+ */
|
|
|
+ if (hw->wait_autoneg_complete) {
|
|
|
+ /* We will wait for autoneg to complete. */
|
|
|
+ DEBUGOUT("Waiting for forced speed/duplex link.\n");
|
|
|
+ mii_status_reg = 0;
|
|
|
+
|
|
|
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
|
|
|
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
|
|
|
+ * to be set.
|
|
|
+ */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (mii_status_reg & MII_SR_LINK_STATUS)
|
|
|
+ break;
|
|
|
+ msleep(100);
|
|
|
+ }
|
|
|
+ if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
|
|
|
+ /* We didn't get link. Reset the DSP and wait again for link. */
|
|
|
+ ret_val = e1000_phy_reset_dsp(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error Resetting PHY DSP\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* This loop will early-out if the link condition has been met. */
|
|
|
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
+ if (mii_status_reg & MII_SR_LINK_STATUS)
|
|
|
+ break;
|
|
|
+ msleep(100);
|
|
|
+ /* Read the MII Status Register and wait for Auto-Neg Complete bit
|
|
|
+ * to be set.
|
|
|
+ */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_m88) {
|
|
|
+ /* Because we reset the PHY above, we need to re-force TX_CLK in the
|
|
|
+ * Extended PHY Specific Control Register to 25MHz clock. This value
|
|
|
+ * defaults back to a 2.5MHz clock when the PHY is reset.
|
|
|
+ */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* In addition, because of the s/w reset above, we need to enable CRS on
|
|
|
+ * TX. This must be set for both full and half duplex operation.
|
|
|
+ */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
|
|
|
+ && (!hw->autoneg)
|
|
|
+ && (hw->forced_speed_duplex == e1000_10_full
|
|
|
+ || hw->forced_speed_duplex == e1000_10_half)) {
|
|
|
+ ret_val = e1000_polarity_reversal_workaround(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_config_collision_dist - set collision distance register
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Sets the collision distance in the Transmit Control register.
|
|
|
+ * Link should have been established previously. Reads the speed and duplex
|
|
|
+ * information from the Device Status register.
|
|
|
+ */
|
|
|
+void e1000_config_collision_dist(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ u32 tctl, coll_dist;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_config_collision_dist");
|
|
|
+
|
|
|
+ if (hw->mac_type < e1000_82543)
|
|
|
+ coll_dist = E1000_COLLISION_DISTANCE_82542;
|
|
|
+ else
|
|
|
+ coll_dist = E1000_COLLISION_DISTANCE;
|
|
|
+
|
|
|
+ tctl = er32(TCTL);
|
|
|
+
|
|
|
+ tctl &= ~E1000_TCTL_COLD;
|
|
|
+ tctl |= coll_dist << E1000_COLD_SHIFT;
|
|
|
+
|
|
|
+ ew32(TCTL, tctl);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_config_mac_to_phy - sync phy and mac settings
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @mii_reg: data to write to the MII control register
|
|
|
+ *
|
|
|
+ * Sets MAC speed and duplex settings to reflect the those in the PHY
|
|
|
+ * The contents of the PHY register containing the needed information need to
|
|
|
+ * be passed in.
|
|
|
+ */
|
|
|
+static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ u32 ctrl;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_config_mac_to_phy");
|
|
|
+
|
|
|
+ /* 82544 or newer MAC, Auto Speed Detection takes care of
|
|
|
+ * MAC speed/duplex configuration.*/
|
|
|
+ if (hw->mac_type >= e1000_82544)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* Read the Device Control Register and set the bits to Force Speed
|
|
|
+ * and Duplex.
|
|
|
+ */
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
|
+ ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
|
|
|
+
|
|
|
+ /* Set up duplex in the Device Control and Transmit Control
|
|
|
+ * registers depending on negotiated values.
|
|
|
+ */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (phy_data & M88E1000_PSSR_DPLX)
|
|
|
+ ctrl |= E1000_CTRL_FD;
|
|
|
+ else
|
|
|
+ ctrl &= ~E1000_CTRL_FD;
|
|
|
+
|
|
|
+ e1000_config_collision_dist(hw);
|
|
|
+
|
|
|
+ /* Set up speed in the Device Control register depending on
|
|
|
+ * negotiated values.
|
|
|
+ */
|
|
|
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
|
|
|
+ ctrl |= E1000_CTRL_SPD_1000;
|
|
|
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
|
|
|
+ ctrl |= E1000_CTRL_SPD_100;
|
|
|
+
|
|
|
+ /* Write the configured values back to the Device Control Reg. */
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_force_mac_fc - force flow control settings
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Forces the MAC's flow control settings.
|
|
|
* Sets the TFCE and RFCE bits in the device control register to reflect
|
|
|
* the adapter settings. TFCE and RFCE need to be explicitly set by
|
|
|
* software when a Copper PHY is used because autonegotiation is managed
|
|
|
* by the PHY rather than the MAC. Software must also configure these
|
|
|
* bits when link is forced on a fiber connection.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_force_mac_fc(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_force_mac_fc");
|
|
|
-
|
|
|
- /* Get the current configuration of the Device Control Register */
|
|
|
- ctrl = er32(CTRL);
|
|
|
-
|
|
|
- /* Because we didn't get link via the internal auto-negotiation
|
|
|
- * mechanism (we either forced link or we got link via PHY
|
|
|
- * auto-neg), we have to manually enable/disable transmit an
|
|
|
- * receive flow control.
|
|
|
- *
|
|
|
- * The "Case" statement below enables/disable flow control
|
|
|
- * according to the "hw->fc" parameter.
|
|
|
- *
|
|
|
- * The possible values of the "fc" parameter are:
|
|
|
- * 0: Flow control is completely disabled
|
|
|
- * 1: Rx flow control is enabled (we can receive pause
|
|
|
- * frames but not send pause frames).
|
|
|
- * 2: Tx flow control is enabled (we can send pause frames
|
|
|
- * frames but we do not receive pause frames).
|
|
|
- * 3: Both Rx and TX flow control (symmetric) is enabled.
|
|
|
- * other: No other values should be possible at this point.
|
|
|
- */
|
|
|
-
|
|
|
- switch (hw->fc) {
|
|
|
- case E1000_FC_NONE:
|
|
|
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
|
|
|
- break;
|
|
|
- case E1000_FC_RX_PAUSE:
|
|
|
- ctrl &= (~E1000_CTRL_TFCE);
|
|
|
- ctrl |= E1000_CTRL_RFCE;
|
|
|
- break;
|
|
|
- case E1000_FC_TX_PAUSE:
|
|
|
- ctrl &= (~E1000_CTRL_RFCE);
|
|
|
- ctrl |= E1000_CTRL_TFCE;
|
|
|
- break;
|
|
|
- case E1000_FC_FULL:
|
|
|
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
|
|
|
- break;
|
|
|
- default:
|
|
|
- DEBUGOUT("Flow control param set incorrectly\n");
|
|
|
- return -E1000_ERR_CONFIG;
|
|
|
- }
|
|
|
-
|
|
|
- /* Disable TX Flow Control for 82542 (rev 2.0) */
|
|
|
- if (hw->mac_type == e1000_82542_rev2_0)
|
|
|
- ctrl &= (~E1000_CTRL_TFCE);
|
|
|
-
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 ctrl;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_force_mac_fc");
|
|
|
+
|
|
|
+ /* Get the current configuration of the Device Control Register */
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+
|
|
|
+ /* Because we didn't get link via the internal auto-negotiation
|
|
|
+ * mechanism (we either forced link or we got link via PHY
|
|
|
+ * auto-neg), we have to manually enable/disable transmit an
|
|
|
+ * receive flow control.
|
|
|
+ *
|
|
|
+ * The "Case" statement below enables/disable flow control
|
|
|
+ * according to the "hw->fc" parameter.
|
|
|
+ *
|
|
|
+ * The possible values of the "fc" parameter are:
|
|
|
+ * 0: Flow control is completely disabled
|
|
|
+ * 1: Rx flow control is enabled (we can receive pause
|
|
|
+ * frames but not send pause frames).
|
|
|
+ * 2: Tx flow control is enabled (we can send pause frames
|
|
|
+ * frames but we do not receive pause frames).
|
|
|
+ * 3: Both Rx and TX flow control (symmetric) is enabled.
|
|
|
+ * other: No other values should be possible at this point.
|
|
|
+ */
|
|
|
+
|
|
|
+ switch (hw->fc) {
|
|
|
+ case E1000_FC_NONE:
|
|
|
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
|
|
|
+ break;
|
|
|
+ case E1000_FC_RX_PAUSE:
|
|
|
+ ctrl &= (~E1000_CTRL_TFCE);
|
|
|
+ ctrl |= E1000_CTRL_RFCE;
|
|
|
+ break;
|
|
|
+ case E1000_FC_TX_PAUSE:
|
|
|
+ ctrl &= (~E1000_CTRL_RFCE);
|
|
|
+ ctrl |= E1000_CTRL_TFCE;
|
|
|
+ break;
|
|
|
+ case E1000_FC_FULL:
|
|
|
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ DEBUGOUT("Flow control param set incorrectly\n");
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Disable TX Flow Control for 82542 (rev 2.0) */
|
|
|
+ if (hw->mac_type == e1000_82542_rev2_0)
|
|
|
+ ctrl &= (~E1000_CTRL_TFCE);
|
|
|
+
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Configures flow control settings after link is established
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_config_fc_after_link_up - configure flow control after autoneg
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
+ * Configures flow control settings after link is established
|
|
|
* Should be called immediately after a valid link has been established.
|
|
|
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
|
|
|
* and autonegotiation is enabled, the MAC flow control settings will be set
|
|
|
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
|
|
|
- * and RFCE bits will be automaticaly set to the negotiated flow control mode.
|
|
|
- *****************************************************************************/
|
|
|
+ * and RFCE bits will be automatically set to the negotiated flow control mode.
|
|
|
+ */
|
|
|
static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 mii_status_reg;
|
|
|
- u16 mii_nway_adv_reg;
|
|
|
- u16 mii_nway_lp_ability_reg;
|
|
|
- u16 speed;
|
|
|
- u16 duplex;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_config_fc_after_link_up");
|
|
|
-
|
|
|
- /* Check for the case where we have fiber media and auto-neg failed
|
|
|
- * so we had to force link. In this case, we need to force the
|
|
|
- * configuration of the MAC to match the "fc" parameter.
|
|
|
- */
|
|
|
- if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
|
|
|
- ((hw->media_type == e1000_media_type_internal_serdes) &&
|
|
|
- (hw->autoneg_failed)) ||
|
|
|
- ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
|
|
|
- ret_val = e1000_force_mac_fc(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error forcing flow control settings\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Check for the case where we have copper media and auto-neg is
|
|
|
- * enabled. In this case, we need to check and see if Auto-Neg
|
|
|
- * has completed, and if so, how the PHY and link partner has
|
|
|
- * flow control configured.
|
|
|
- */
|
|
|
- if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
|
|
|
- /* Read the MII Status Register and check to see if AutoNeg
|
|
|
- * has completed. We read this twice because this reg has
|
|
|
- * some "sticky" (latched) bits.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
|
|
|
- /* The AutoNeg process has completed, so we now need to
|
|
|
- * read both the Auto Negotiation Advertisement Register
|
|
|
- * (Address 4) and the Auto_Negotiation Base Page Ability
|
|
|
- * Register (Address 5) to determine how flow control was
|
|
|
- * negotiated.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
|
|
|
- &mii_nway_adv_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
|
|
|
- &mii_nway_lp_ability_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Two bits in the Auto Negotiation Advertisement Register
|
|
|
- * (Address 4) and two bits in the Auto Negotiation Base
|
|
|
- * Page Ability Register (Address 5) determine flow control
|
|
|
- * for both the PHY and the link partner. The following
|
|
|
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
|
|
- * 1999, describes these PAUSE resolution bits and how flow
|
|
|
- * control is determined based upon these settings.
|
|
|
- * NOTE: DC = Don't Care
|
|
|
- *
|
|
|
- * LOCAL DEVICE | LINK PARTNER
|
|
|
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
|
|
- *-------|---------|-------|---------|--------------------
|
|
|
- * 0 | 0 | DC | DC | E1000_FC_NONE
|
|
|
- * 0 | 1 | 0 | DC | E1000_FC_NONE
|
|
|
- * 0 | 1 | 1 | 0 | E1000_FC_NONE
|
|
|
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
|
|
|
- * 1 | 0 | 0 | DC | E1000_FC_NONE
|
|
|
- * 1 | DC | 1 | DC | E1000_FC_FULL
|
|
|
- * 1 | 1 | 0 | 0 | E1000_FC_NONE
|
|
|
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
|
|
|
- *
|
|
|
- */
|
|
|
- /* Are both PAUSE bits set to 1? If so, this implies
|
|
|
- * Symmetric Flow Control is enabled at both ends. The
|
|
|
- * ASM_DIR bits are irrelevant per the spec.
|
|
|
- *
|
|
|
- * For Symmetric Flow Control:
|
|
|
- *
|
|
|
- * LOCAL DEVICE | LINK PARTNER
|
|
|
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
|
- *-------|---------|-------|---------|--------------------
|
|
|
- * 1 | DC | 1 | DC | E1000_FC_FULL
|
|
|
- *
|
|
|
- */
|
|
|
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
|
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
|
|
- /* Now we need to check if the user selected RX ONLY
|
|
|
- * of pause frames. In this case, we had to advertise
|
|
|
- * FULL flow control because we could not advertise RX
|
|
|
- * ONLY. Hence, we must now check to see if we need to
|
|
|
- * turn OFF the TRANSMISSION of PAUSE frames.
|
|
|
- */
|
|
|
- if (hw->original_fc == E1000_FC_FULL) {
|
|
|
- hw->fc = E1000_FC_FULL;
|
|
|
- DEBUGOUT("Flow Control = FULL.\n");
|
|
|
- } else {
|
|
|
- hw->fc = E1000_FC_RX_PAUSE;
|
|
|
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
|
|
|
- }
|
|
|
- }
|
|
|
- /* For receiving PAUSE frames ONLY.
|
|
|
- *
|
|
|
- * LOCAL DEVICE | LINK PARTNER
|
|
|
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
|
- *-------|---------|-------|---------|--------------------
|
|
|
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
|
|
|
- *
|
|
|
- */
|
|
|
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
|
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
|
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
|
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
|
- hw->fc = E1000_FC_TX_PAUSE;
|
|
|
- DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
|
|
|
- }
|
|
|
- /* For transmitting PAUSE frames ONLY.
|
|
|
- *
|
|
|
- * LOCAL DEVICE | LINK PARTNER
|
|
|
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
|
- *-------|---------|-------|---------|--------------------
|
|
|
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
|
|
|
- *
|
|
|
- */
|
|
|
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
|
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
|
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
|
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
|
- hw->fc = E1000_FC_RX_PAUSE;
|
|
|
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
|
|
|
- }
|
|
|
- /* Per the IEEE spec, at this point flow control should be
|
|
|
- * disabled. However, we want to consider that we could
|
|
|
- * be connected to a legacy switch that doesn't advertise
|
|
|
- * desired flow control, but can be forced on the link
|
|
|
- * partner. So if we advertised no flow control, that is
|
|
|
- * what we will resolve to. If we advertised some kind of
|
|
|
- * receive capability (Rx Pause Only or Full Flow Control)
|
|
|
- * and the link partner advertised none, we will configure
|
|
|
- * ourselves to enable Rx Flow Control only. We can do
|
|
|
- * this safely for two reasons: If the link partner really
|
|
|
- * didn't want flow control enabled, and we enable Rx, no
|
|
|
- * harm done since we won't be receiving any PAUSE frames
|
|
|
- * anyway. If the intent on the link partner was to have
|
|
|
- * flow control enabled, then by us enabling RX only, we
|
|
|
- * can at least receive pause frames and process them.
|
|
|
- * This is a good idea because in most cases, since we are
|
|
|
- * predominantly a server NIC, more times than not we will
|
|
|
- * be asked to delay transmission of packets than asking
|
|
|
- * our link partner to pause transmission of frames.
|
|
|
- */
|
|
|
- else if ((hw->original_fc == E1000_FC_NONE ||
|
|
|
- hw->original_fc == E1000_FC_TX_PAUSE) ||
|
|
|
- hw->fc_strict_ieee) {
|
|
|
- hw->fc = E1000_FC_NONE;
|
|
|
- DEBUGOUT("Flow Control = NONE.\n");
|
|
|
- } else {
|
|
|
- hw->fc = E1000_FC_RX_PAUSE;
|
|
|
- DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
|
|
|
- }
|
|
|
-
|
|
|
- /* Now we need to do one last check... If we auto-
|
|
|
- * negotiated to HALF DUPLEX, flow control should not be
|
|
|
- * enabled per IEEE 802.3 spec.
|
|
|
- */
|
|
|
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error getting link speed and duplex\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- if (duplex == HALF_DUPLEX)
|
|
|
- hw->fc = E1000_FC_NONE;
|
|
|
-
|
|
|
- /* Now we call a subroutine to actually force the MAC
|
|
|
- * controller to use the correct flow control settings.
|
|
|
- */
|
|
|
- ret_val = e1000_force_mac_fc(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error forcing flow control settings\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- } else {
|
|
|
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
|
|
|
- }
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 mii_status_reg;
|
|
|
+ u16 mii_nway_adv_reg;
|
|
|
+ u16 mii_nway_lp_ability_reg;
|
|
|
+ u16 speed;
|
|
|
+ u16 duplex;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_config_fc_after_link_up");
|
|
|
+
|
|
|
+ /* Check for the case where we have fiber media and auto-neg failed
|
|
|
+ * so we had to force link. In this case, we need to force the
|
|
|
+ * configuration of the MAC to match the "fc" parameter.
|
|
|
+ */
|
|
|
+ if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
|
|
|
+ || ((hw->media_type == e1000_media_type_internal_serdes)
|
|
|
+ && (hw->autoneg_failed))
|
|
|
+ || ((hw->media_type == e1000_media_type_copper)
|
|
|
+ && (!hw->autoneg))) {
|
|
|
+ ret_val = e1000_force_mac_fc(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error forcing flow control settings\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Check for the case where we have copper media and auto-neg is
|
|
|
+ * enabled. In this case, we need to check and see if Auto-Neg
|
|
|
+ * has completed, and if so, how the PHY and link partner has
|
|
|
+ * flow control configured.
|
|
|
+ */
|
|
|
+ if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
|
|
|
+ /* Read the MII Status Register and check to see if AutoNeg
|
|
|
+ * has completed. We read this twice because this reg has
|
|
|
+ * some "sticky" (latched) bits.
|
|
|
+ */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
|
|
|
+ /* The AutoNeg process has completed, so we now need to
|
|
|
+ * read both the Auto Negotiation Advertisement Register
|
|
|
+ * (Address 4) and the Auto_Negotiation Base Page Ability
|
|
|
+ * Register (Address 5) to determine how flow control was
|
|
|
+ * negotiated.
|
|
|
+ */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
|
|
|
+ &mii_nway_adv_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
|
|
|
+ &mii_nway_lp_ability_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Two bits in the Auto Negotiation Advertisement Register
|
|
|
+ * (Address 4) and two bits in the Auto Negotiation Base
|
|
|
+ * Page Ability Register (Address 5) determine flow control
|
|
|
+ * for both the PHY and the link partner. The following
|
|
|
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
|
|
+ * 1999, describes these PAUSE resolution bits and how flow
|
|
|
+ * control is determined based upon these settings.
|
|
|
+ * NOTE: DC = Don't Care
|
|
|
+ *
|
|
|
+ * LOCAL DEVICE | LINK PARTNER
|
|
|
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
|
|
+ *-------|---------|-------|---------|--------------------
|
|
|
+ * 0 | 0 | DC | DC | E1000_FC_NONE
|
|
|
+ * 0 | 1 | 0 | DC | E1000_FC_NONE
|
|
|
+ * 0 | 1 | 1 | 0 | E1000_FC_NONE
|
|
|
+ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
|
|
|
+ * 1 | 0 | 0 | DC | E1000_FC_NONE
|
|
|
+ * 1 | DC | 1 | DC | E1000_FC_FULL
|
|
|
+ * 1 | 1 | 0 | 0 | E1000_FC_NONE
|
|
|
+ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
|
|
|
+ *
|
|
|
+ */
|
|
|
+ /* Are both PAUSE bits set to 1? If so, this implies
|
|
|
+ * Symmetric Flow Control is enabled at both ends. The
|
|
|
+ * ASM_DIR bits are irrelevant per the spec.
|
|
|
+ *
|
|
|
+ * For Symmetric Flow Control:
|
|
|
+ *
|
|
|
+ * LOCAL DEVICE | LINK PARTNER
|
|
|
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
|
+ *-------|---------|-------|---------|--------------------
|
|
|
+ * 1 | DC | 1 | DC | E1000_FC_FULL
|
|
|
+ *
|
|
|
+ */
|
|
|
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
|
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
|
|
+ /* Now we need to check if the user selected RX ONLY
|
|
|
+ * of pause frames. In this case, we had to advertise
|
|
|
+ * FULL flow control because we could not advertise RX
|
|
|
+ * ONLY. Hence, we must now check to see if we need to
|
|
|
+ * turn OFF the TRANSMISSION of PAUSE frames.
|
|
|
+ */
|
|
|
+ if (hw->original_fc == E1000_FC_FULL) {
|
|
|
+ hw->fc = E1000_FC_FULL;
|
|
|
+ DEBUGOUT("Flow Control = FULL.\n");
|
|
|
+ } else {
|
|
|
+ hw->fc = E1000_FC_RX_PAUSE;
|
|
|
+ DEBUGOUT
|
|
|
+ ("Flow Control = RX PAUSE frames only.\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /* For receiving PAUSE frames ONLY.
|
|
|
+ *
|
|
|
+ * LOCAL DEVICE | LINK PARTNER
|
|
|
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
|
+ *-------|---------|-------|---------|--------------------
|
|
|
+ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
|
|
|
+ *
|
|
|
+ */
|
|
|
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
|
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
|
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
|
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
|
|
|
+ {
|
|
|
+ hw->fc = E1000_FC_TX_PAUSE;
|
|
|
+ DEBUGOUT
|
|
|
+ ("Flow Control = TX PAUSE frames only.\n");
|
|
|
+ }
|
|
|
+ /* For transmitting PAUSE frames ONLY.
|
|
|
+ *
|
|
|
+ * LOCAL DEVICE | LINK PARTNER
|
|
|
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
|
+ *-------|---------|-------|---------|--------------------
|
|
|
+ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
|
|
|
+ *
|
|
|
+ */
|
|
|
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
|
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
|
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
|
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
|
|
|
+ {
|
|
|
+ hw->fc = E1000_FC_RX_PAUSE;
|
|
|
+ DEBUGOUT
|
|
|
+ ("Flow Control = RX PAUSE frames only.\n");
|
|
|
+ }
|
|
|
+ /* Per the IEEE spec, at this point flow control should be
|
|
|
+ * disabled. However, we want to consider that we could
|
|
|
+ * be connected to a legacy switch that doesn't advertise
|
|
|
+ * desired flow control, but can be forced on the link
|
|
|
+ * partner. So if we advertised no flow control, that is
|
|
|
+ * what we will resolve to. If we advertised some kind of
|
|
|
+ * receive capability (Rx Pause Only or Full Flow Control)
|
|
|
+ * and the link partner advertised none, we will configure
|
|
|
+ * ourselves to enable Rx Flow Control only. We can do
|
|
|
+ * this safely for two reasons: If the link partner really
|
|
|
+ * didn't want flow control enabled, and we enable Rx, no
|
|
|
+ * harm done since we won't be receiving any PAUSE frames
|
|
|
+ * anyway. If the intent on the link partner was to have
|
|
|
+ * flow control enabled, then by us enabling RX only, we
|
|
|
+ * can at least receive pause frames and process them.
|
|
|
+ * This is a good idea because in most cases, since we are
|
|
|
+ * predominantly a server NIC, more times than not we will
|
|
|
+ * be asked to delay transmission of packets than asking
|
|
|
+ * our link partner to pause transmission of frames.
|
|
|
+ */
|
|
|
+ else if ((hw->original_fc == E1000_FC_NONE ||
|
|
|
+ hw->original_fc == E1000_FC_TX_PAUSE) ||
|
|
|
+ hw->fc_strict_ieee) {
|
|
|
+ hw->fc = E1000_FC_NONE;
|
|
|
+ DEBUGOUT("Flow Control = NONE.\n");
|
|
|
+ } else {
|
|
|
+ hw->fc = E1000_FC_RX_PAUSE;
|
|
|
+ DEBUGOUT
|
|
|
+ ("Flow Control = RX PAUSE frames only.\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Now we need to do one last check... If we auto-
|
|
|
+ * negotiated to HALF DUPLEX, flow control should not be
|
|
|
+ * enabled per IEEE 802.3 spec.
|
|
|
+ */
|
|
|
+ ret_val =
|
|
|
+ e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT
|
|
|
+ ("Error getting link speed and duplex\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (duplex == HALF_DUPLEX)
|
|
|
+ hw->fc = E1000_FC_NONE;
|
|
|
+
|
|
|
+ /* Now we call a subroutine to actually force the MAC
|
|
|
+ * controller to use the correct flow control settings.
|
|
|
+ */
|
|
|
+ ret_val = e1000_force_mac_fc(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT
|
|
|
+ ("Error forcing flow control settings\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ DEBUGOUT
|
|
|
+ ("Copper PHY and Auto Neg has not completed.\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
- * e1000_check_for_serdes_link_generic - Check for link (Serdes)
|
|
|
- * @hw: pointer to the HW structure
|
|
|
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
|
|
|
+ * @hw: pointer to the HW structure
|
|
|
*
|
|
|
- * Checks for link up on the hardware. If link is not up and we have
|
|
|
- * a signal, then we need to force link up.
|
|
|
- **/
|
|
|
+ * Checks for link up on the hardware. If link is not up and we have
|
|
|
+ * a signal, then we need to force link up.
|
|
|
+ */
|
|
|
s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
|
|
|
{
|
|
|
u32 rxcw;
|
|
|
@@ -2227,2647 +2279,2676 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
|
|
|
if (!(rxcw & E1000_RXCW_IV)) {
|
|
|
hw->serdes_has_link = true;
|
|
|
DEBUGOUT("SERDES: Link up - autoneg "
|
|
|
- "completed sucessfully.\n");
|
|
|
+ "completed successfully.\n");
|
|
|
} else {
|
|
|
hw->serdes_has_link = false;
|
|
|
DEBUGOUT("SERDES: Link down - invalid"
|
|
|
- "codewords detected in autoneg.\n");
|
|
|
+ "codewords detected in autoneg.\n");
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ hw->serdes_has_link = false;
|
|
|
+ DEBUGOUT("SERDES: Link down - no sync.\n");
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ hw->serdes_has_link = false;
|
|
|
+ DEBUGOUT("SERDES: Link down - autoneg failed\n");
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ out:
|
|
|
+ return ret_val;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_check_for_link
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Checks to see if the link status of the hardware has changed.
|
|
|
+ * Called by any function that needs to check the link status of the adapter.
|
|
|
+ */
|
|
|
+s32 e1000_check_for_link(struct e1000_hw *hw)
|
|
|
+{
|
|
|
+ u32 rxcw = 0;
|
|
|
+ u32 ctrl;
|
|
|
+ u32 status;
|
|
|
+ u32 rctl;
|
|
|
+ u32 icr;
|
|
|
+ u32 signal = 0;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_check_for_link");
|
|
|
+
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+ status = er32(STATUS);
|
|
|
+
|
|
|
+ /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
|
|
|
+ * set when the optics detect a signal. On older adapters, it will be
|
|
|
+ * cleared when there is a signal. This applies to fiber media only.
|
|
|
+ */
|
|
|
+ if ((hw->media_type == e1000_media_type_fiber) ||
|
|
|
+ (hw->media_type == e1000_media_type_internal_serdes)) {
|
|
|
+ rxcw = er32(RXCW);
|
|
|
+
|
|
|
+ if (hw->media_type == e1000_media_type_fiber) {
|
|
|
+ signal =
|
|
|
+ (hw->mac_type >
|
|
|
+ e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
|
|
+ if (status & E1000_STATUS_LU)
|
|
|
+ hw->get_link_status = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If we have a copper PHY then we only want to go out to the PHY
|
|
|
+ * registers to see if Auto-Neg has completed and/or if our link
|
|
|
+ * status has changed. The get_link_status flag will be set if we
|
|
|
+ * receive a Link Status Change interrupt or we have Rx Sequence
|
|
|
+ * Errors.
|
|
|
+ */
|
|
|
+ if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
|
|
|
+ /* First we want to see if the MII Status Register reports
|
|
|
+ * link. If so, then we want to get the current speed/duplex
|
|
|
+ * of the PHY.
|
|
|
+ * Read the register twice since the link bit is sticky.
|
|
|
+ */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (phy_data & MII_SR_LINK_STATUS) {
|
|
|
+ hw->get_link_status = false;
|
|
|
+ /* Check if there was DownShift, must be checked immediately after
|
|
|
+ * link-up */
|
|
|
+ e1000_check_downshift(hw);
|
|
|
+
|
|
|
+ /* If we are on 82544 or 82543 silicon and speed/duplex
|
|
|
+ * are forced to 10H or 10F, then we will implement the polarity
|
|
|
+ * reversal workaround. We disable interrupts first, and upon
|
|
|
+ * returning, place the devices interrupt state to its previous
|
|
|
+ * value except for the link status change interrupt which will
|
|
|
+ * happen due to the execution of this workaround.
|
|
|
+ */
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82544
|
|
|
+ || hw->mac_type == e1000_82543) && (!hw->autoneg)
|
|
|
+ && (hw->forced_speed_duplex == e1000_10_full
|
|
|
+ || hw->forced_speed_duplex == e1000_10_half)) {
|
|
|
+ ew32(IMC, 0xffffffff);
|
|
|
+ ret_val =
|
|
|
+ e1000_polarity_reversal_workaround(hw);
|
|
|
+ icr = er32(ICR);
|
|
|
+ ew32(ICS, (icr & ~E1000_ICS_LSC));
|
|
|
+ ew32(IMS, IMS_ENABLE_MASK);
|
|
|
+ }
|
|
|
+
|
|
|
+ } else {
|
|
|
+ /* No link detected */
|
|
|
+ e1000_config_dsp_after_link_change(hw, false);
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* If we are forcing speed/duplex, then we simply return since
|
|
|
+ * we have already determined whether we have link or not.
|
|
|
+ */
|
|
|
+ if (!hw->autoneg)
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+
|
|
|
+ /* optimize the dsp settings for the igp phy */
|
|
|
+ e1000_config_dsp_after_link_change(hw, true);
|
|
|
+
|
|
|
+ /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
|
|
|
+ * have Si on board that is 82544 or newer, Auto
|
|
|
+ * Speed Detection takes care of MAC speed/duplex
|
|
|
+ * configuration. So we only need to configure Collision
|
|
|
+ * Distance in the MAC. Otherwise, we need to force
|
|
|
+ * speed/duplex on the MAC to the current PHY speed/duplex
|
|
|
+ * settings.
|
|
|
+ */
|
|
|
+ if (hw->mac_type >= e1000_82544)
|
|
|
+ e1000_config_collision_dist(hw);
|
|
|
+ else {
|
|
|
+ ret_val = e1000_config_mac_to_phy(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT
|
|
|
+ ("Error configuring MAC to PHY settings\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Configure Flow Control now that Auto-Neg has completed. First, we
|
|
|
+ * need to restore the desired flow control settings because we may
|
|
|
+ * have had to re-autoneg with a different link partner.
|
|
|
+ */
|
|
|
+ ret_val = e1000_config_fc_after_link_up(hw);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error configuring flow control\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* At this point we know that we are on copper and we have
|
|
|
+ * auto-negotiated link. These are conditions for checking the link
|
|
|
+ * partner capability register. We use the link speed to determine if
|
|
|
+ * TBI compatibility needs to be turned on or off. If the link is not
|
|
|
+ * at gigabit speed, then TBI compatibility is not needed. If we are
|
|
|
+ * at gigabit speed, we turn on TBI compatibility.
|
|
|
+ */
|
|
|
+ if (hw->tbi_compatibility_en) {
|
|
|
+ u16 speed, duplex;
|
|
|
+ ret_val =
|
|
|
+ e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT
|
|
|
+ ("Error getting link speed and duplex\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ if (speed != SPEED_1000) {
|
|
|
+ /* If link speed is not set to gigabit speed, we do not need
|
|
|
+ * to enable TBI compatibility.
|
|
|
+ */
|
|
|
+ if (hw->tbi_compatibility_on) {
|
|
|
+ /* If we previously were in the mode, turn it off. */
|
|
|
+ rctl = er32(RCTL);
|
|
|
+ rctl &= ~E1000_RCTL_SBP;
|
|
|
+ ew32(RCTL, rctl);
|
|
|
+ hw->tbi_compatibility_on = false;
|
|
|
}
|
|
|
} else {
|
|
|
- hw->serdes_has_link = false;
|
|
|
- DEBUGOUT("SERDES: Link down - no sync.\n");
|
|
|
+ /* If TBI compatibility is was previously off, turn it on. For
|
|
|
+ * compatibility with a TBI link partner, we will store bad
|
|
|
+ * packets. Some frames have an additional byte on the end and
|
|
|
+ * will look like CRC errors to to the hardware.
|
|
|
+ */
|
|
|
+ if (!hw->tbi_compatibility_on) {
|
|
|
+ hw->tbi_compatibility_on = true;
|
|
|
+ rctl = er32(RCTL);
|
|
|
+ rctl |= E1000_RCTL_SBP;
|
|
|
+ ew32(RCTL, rctl);
|
|
|
+ }
|
|
|
}
|
|
|
- } else {
|
|
|
- hw->serdes_has_link = false;
|
|
|
- DEBUGOUT("SERDES: Link down - autoneg failed\n");
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-out:
|
|
|
- return ret_val;
|
|
|
-}
|
|
|
-/******************************************************************************
|
|
|
- * Checks to see if the link status of the hardware has changed.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *
|
|
|
- * Called by any function that needs to check the link status of the adapter.
|
|
|
- *****************************************************************************/
|
|
|
-s32 e1000_check_for_link(struct e1000_hw *hw)
|
|
|
-{
|
|
|
- u32 rxcw = 0;
|
|
|
- u32 ctrl;
|
|
|
- u32 status;
|
|
|
- u32 rctl;
|
|
|
- u32 icr;
|
|
|
- u32 signal = 0;
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_check_for_link");
|
|
|
-
|
|
|
- ctrl = er32(CTRL);
|
|
|
- status = er32(STATUS);
|
|
|
-
|
|
|
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
|
|
|
- * set when the optics detect a signal. On older adapters, it will be
|
|
|
- * cleared when there is a signal. This applies to fiber media only.
|
|
|
- */
|
|
|
- if ((hw->media_type == e1000_media_type_fiber) ||
|
|
|
- (hw->media_type == e1000_media_type_internal_serdes)) {
|
|
|
- rxcw = er32(RXCW);
|
|
|
-
|
|
|
- if (hw->media_type == e1000_media_type_fiber) {
|
|
|
- signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
|
|
- if (status & E1000_STATUS_LU)
|
|
|
- hw->get_link_status = false;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* If we have a copper PHY then we only want to go out to the PHY
|
|
|
- * registers to see if Auto-Neg has completed and/or if our link
|
|
|
- * status has changed. The get_link_status flag will be set if we
|
|
|
- * receive a Link Status Change interrupt or we have Rx Sequence
|
|
|
- * Errors.
|
|
|
- */
|
|
|
- if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
|
|
|
- /* First we want to see if the MII Status Register reports
|
|
|
- * link. If so, then we want to get the current speed/duplex
|
|
|
- * of the PHY.
|
|
|
- * Read the register twice since the link bit is sticky.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (phy_data & MII_SR_LINK_STATUS) {
|
|
|
- hw->get_link_status = false;
|
|
|
- /* Check if there was DownShift, must be checked immediately after
|
|
|
- * link-up */
|
|
|
- e1000_check_downshift(hw);
|
|
|
-
|
|
|
- /* If we are on 82544 or 82543 silicon and speed/duplex
|
|
|
- * are forced to 10H or 10F, then we will implement the polarity
|
|
|
- * reversal workaround. We disable interrupts first, and upon
|
|
|
- * returning, place the devices interrupt state to its previous
|
|
|
- * value except for the link status change interrupt which will
|
|
|
- * happen due to the execution of this workaround.
|
|
|
- */
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
|
|
|
- (!hw->autoneg) &&
|
|
|
- (hw->forced_speed_duplex == e1000_10_full ||
|
|
|
- hw->forced_speed_duplex == e1000_10_half)) {
|
|
|
- ew32(IMC, 0xffffffff);
|
|
|
- ret_val = e1000_polarity_reversal_workaround(hw);
|
|
|
- icr = er32(ICR);
|
|
|
- ew32(ICS, (icr & ~E1000_ICS_LSC));
|
|
|
- ew32(IMS, IMS_ENABLE_MASK);
|
|
|
- }
|
|
|
-
|
|
|
- } else {
|
|
|
- /* No link detected */
|
|
|
- e1000_config_dsp_after_link_change(hw, false);
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- /* If we are forcing speed/duplex, then we simply return since
|
|
|
- * we have already determined whether we have link or not.
|
|
|
- */
|
|
|
- if (!hw->autoneg) return -E1000_ERR_CONFIG;
|
|
|
-
|
|
|
- /* optimize the dsp settings for the igp phy */
|
|
|
- e1000_config_dsp_after_link_change(hw, true);
|
|
|
-
|
|
|
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
|
|
|
- * have Si on board that is 82544 or newer, Auto
|
|
|
- * Speed Detection takes care of MAC speed/duplex
|
|
|
- * configuration. So we only need to configure Collision
|
|
|
- * Distance in the MAC. Otherwise, we need to force
|
|
|
- * speed/duplex on the MAC to the current PHY speed/duplex
|
|
|
- * settings.
|
|
|
- */
|
|
|
- if (hw->mac_type >= e1000_82544)
|
|
|
- e1000_config_collision_dist(hw);
|
|
|
- else {
|
|
|
- ret_val = e1000_config_mac_to_phy(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error configuring MAC to PHY settings\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Configure Flow Control now that Auto-Neg has completed. First, we
|
|
|
- * need to restore the desired flow control settings because we may
|
|
|
- * have had to re-autoneg with a different link partner.
|
|
|
- */
|
|
|
- ret_val = e1000_config_fc_after_link_up(hw);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error configuring flow control\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* At this point we know that we are on copper and we have
|
|
|
- * auto-negotiated link. These are conditions for checking the link
|
|
|
- * partner capability register. We use the link speed to determine if
|
|
|
- * TBI compatibility needs to be turned on or off. If the link is not
|
|
|
- * at gigabit speed, then TBI compatibility is not needed. If we are
|
|
|
- * at gigabit speed, we turn on TBI compatibility.
|
|
|
- */
|
|
|
- if (hw->tbi_compatibility_en) {
|
|
|
- u16 speed, duplex;
|
|
|
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error getting link speed and duplex\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- if (speed != SPEED_1000) {
|
|
|
- /* If link speed is not set to gigabit speed, we do not need
|
|
|
- * to enable TBI compatibility.
|
|
|
- */
|
|
|
- if (hw->tbi_compatibility_on) {
|
|
|
- /* If we previously were in the mode, turn it off. */
|
|
|
- rctl = er32(RCTL);
|
|
|
- rctl &= ~E1000_RCTL_SBP;
|
|
|
- ew32(RCTL, rctl);
|
|
|
- hw->tbi_compatibility_on = false;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /* If TBI compatibility is was previously off, turn it on. For
|
|
|
- * compatibility with a TBI link partner, we will store bad
|
|
|
- * packets. Some frames have an additional byte on the end and
|
|
|
- * will look like CRC errors to the hardware.
|
|
|
- */
|
|
|
- if (!hw->tbi_compatibility_on) {
|
|
|
- hw->tbi_compatibility_on = true;
|
|
|
- rctl = er32(RCTL);
|
|
|
- rctl |= E1000_RCTL_SBP;
|
|
|
- ew32(RCTL, rctl);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if ((hw->media_type == e1000_media_type_fiber) ||
|
|
|
- (hw->media_type == e1000_media_type_internal_serdes))
|
|
|
- e1000_check_for_serdes_link_generic(hw);
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ if ((hw->media_type == e1000_media_type_fiber) ||
|
|
|
+ (hw->media_type == e1000_media_type_internal_serdes))
|
|
|
+ e1000_check_for_serdes_link_generic(hw);
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
+ * e1000_get_speed_and_duplex
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @speed: Speed of the connection
|
|
|
+ * @duplex: Duplex setting of the connection
|
|
|
+
|
|
|
* Detects the current speed and duplex settings of the hardware.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * speed - Speed of the connection
|
|
|
- * duplex - Duplex setting of the connection
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
|
|
|
{
|
|
|
- u32 status;
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_get_speed_and_duplex");
|
|
|
-
|
|
|
- if (hw->mac_type >= e1000_82543) {
|
|
|
- status = er32(STATUS);
|
|
|
- if (status & E1000_STATUS_SPEED_1000) {
|
|
|
- *speed = SPEED_1000;
|
|
|
- DEBUGOUT("1000 Mbs, ");
|
|
|
- } else if (status & E1000_STATUS_SPEED_100) {
|
|
|
- *speed = SPEED_100;
|
|
|
- DEBUGOUT("100 Mbs, ");
|
|
|
- } else {
|
|
|
- *speed = SPEED_10;
|
|
|
- DEBUGOUT("10 Mbs, ");
|
|
|
- }
|
|
|
-
|
|
|
- if (status & E1000_STATUS_FD) {
|
|
|
- *duplex = FULL_DUPLEX;
|
|
|
- DEBUGOUT("Full Duplex\n");
|
|
|
- } else {
|
|
|
- *duplex = HALF_DUPLEX;
|
|
|
- DEBUGOUT(" Half Duplex\n");
|
|
|
- }
|
|
|
- } else {
|
|
|
- DEBUGOUT("1000 Mbs, Full Duplex\n");
|
|
|
- *speed = SPEED_1000;
|
|
|
- *duplex = FULL_DUPLEX;
|
|
|
- }
|
|
|
-
|
|
|
- /* IGP01 PHY may advertise full duplex operation after speed downgrade even
|
|
|
- * if it is operating at half duplex. Here we set the duplex settings to
|
|
|
- * match the duplex in the link partner's capabilities.
|
|
|
- */
|
|
|
- if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
|
|
|
- *duplex = HALF_DUPLEX;
|
|
|
- else {
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
|
|
|
- (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
|
|
|
- *duplex = HALF_DUPLEX;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 status;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_get_speed_and_duplex");
|
|
|
+
|
|
|
+ if (hw->mac_type >= e1000_82543) {
|
|
|
+ status = er32(STATUS);
|
|
|
+ if (status & E1000_STATUS_SPEED_1000) {
|
|
|
+ *speed = SPEED_1000;
|
|
|
+ DEBUGOUT("1000 Mbs, ");
|
|
|
+ } else if (status & E1000_STATUS_SPEED_100) {
|
|
|
+ *speed = SPEED_100;
|
|
|
+ DEBUGOUT("100 Mbs, ");
|
|
|
+ } else {
|
|
|
+ *speed = SPEED_10;
|
|
|
+ DEBUGOUT("10 Mbs, ");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (status & E1000_STATUS_FD) {
|
|
|
+ *duplex = FULL_DUPLEX;
|
|
|
+ DEBUGOUT("Full Duplex\n");
|
|
|
+ } else {
|
|
|
+ *duplex = HALF_DUPLEX;
|
|
|
+ DEBUGOUT(" Half Duplex\n");
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ DEBUGOUT("1000 Mbs, Full Duplex\n");
|
|
|
+ *speed = SPEED_1000;
|
|
|
+ *duplex = FULL_DUPLEX;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* IGP01 PHY may advertise full duplex operation after speed downgrade even
|
|
|
+ * if it is operating at half duplex. Here we set the duplex settings to
|
|
|
+ * match the duplex in the link partner's capabilities.
|
|
|
+ */
|
|
|
+ if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
|
|
|
+ *duplex = HALF_DUPLEX;
|
|
|
+ else {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ if ((*speed == SPEED_100
|
|
|
+ && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
|
|
|
+ || (*speed == SPEED_10
|
|
|
+ && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
|
|
|
+ *duplex = HALF_DUPLEX;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Blocks until autoneg completes or times out (~4.5 seconds)
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_wait_autoneg
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Blocks until autoneg completes or times out (~4.5 seconds)
|
|
|
+ */
|
|
|
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 i;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_wait_autoneg");
|
|
|
- DEBUGOUT("Waiting for Auto-Neg to complete.\n");
|
|
|
-
|
|
|
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
|
|
|
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
|
|
|
- /* Read the MII Status Register and wait for Auto-Neg
|
|
|
- * Complete bit to be set.
|
|
|
- */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- if (phy_data & MII_SR_AUTONEG_COMPLETE) {
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
- msleep(100);
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 i;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_wait_autoneg");
|
|
|
+ DEBUGOUT("Waiting for Auto-Neg to complete.\n");
|
|
|
+
|
|
|
+ /* We will wait for autoneg to complete or 4.5 seconds to expire. */
|
|
|
+ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
|
|
|
+ /* Read the MII Status Register and wait for Auto-Neg
|
|
|
+ * Complete bit to be set.
|
|
|
+ */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ if (phy_data & MII_SR_AUTONEG_COMPLETE) {
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+ msleep(100);
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Raises the Management Data Clock
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* ctrl - Device control register's current value
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_raise_mdi_clk - Raises the Management Data Clock
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @ctrl: Device control register's current value
|
|
|
+ */
|
|
|
static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
|
|
|
{
|
|
|
- /* Raise the clock input to the Management Data Clock (by setting the MDC
|
|
|
- * bit), and then delay 10 microseconds.
|
|
|
- */
|
|
|
- ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(10);
|
|
|
+ /* Raise the clock input to the Management Data Clock (by setting the MDC
|
|
|
+ * bit), and then delay 10 microseconds.
|
|
|
+ */
|
|
|
+ ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(10);
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Lowers the Management Data Clock
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* ctrl - Device control register's current value
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_lower_mdi_clk - Lowers the Management Data Clock
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @ctrl: Device control register's current value
|
|
|
+ */
|
|
|
static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
|
|
|
{
|
|
|
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
|
|
|
- * bit), and then delay 10 microseconds.
|
|
|
- */
|
|
|
- ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(10);
|
|
|
+ /* Lower the clock input to the Management Data Clock (by clearing the MDC
|
|
|
+ * bit), and then delay 10 microseconds.
|
|
|
+ */
|
|
|
+ ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(10);
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Shifts data bits out to the PHY
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* data - Data to send out to the PHY
|
|
|
-* count - Number of bits to shift out
|
|
|
-*
|
|
|
-* Bits are shifted out in MSB to LSB order.
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @data: Data to send out to the PHY
|
|
|
+ * @count: Number of bits to shift out
|
|
|
+ *
|
|
|
+ * Bits are shifted out in MSB to LSB order.
|
|
|
+ */
|
|
|
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
|
|
|
{
|
|
|
- u32 ctrl;
|
|
|
- u32 mask;
|
|
|
-
|
|
|
- /* We need to shift "count" number of bits out to the PHY. So, the value
|
|
|
- * in the "data" parameter will be shifted out to the PHY one bit at a
|
|
|
- * time. In order to do this, "data" must be broken down into bits.
|
|
|
- */
|
|
|
- mask = 0x01;
|
|
|
- mask <<= (count - 1);
|
|
|
-
|
|
|
- ctrl = er32(CTRL);
|
|
|
-
|
|
|
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
|
|
|
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
|
|
|
-
|
|
|
- while (mask) {
|
|
|
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
|
|
|
- * then raising and lowering the Management Data Clock. A "0" is
|
|
|
- * shifted out to the PHY by setting the MDIO bit to "0" and then
|
|
|
- * raising and lowering the clock.
|
|
|
- */
|
|
|
- if (data & mask)
|
|
|
- ctrl |= E1000_CTRL_MDIO;
|
|
|
- else
|
|
|
- ctrl &= ~E1000_CTRL_MDIO;
|
|
|
-
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
-
|
|
|
- udelay(10);
|
|
|
-
|
|
|
- e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
- e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
-
|
|
|
- mask = mask >> 1;
|
|
|
- }
|
|
|
+ u32 ctrl;
|
|
|
+ u32 mask;
|
|
|
+
|
|
|
+ /* We need to shift "count" number of bits out to the PHY. So, the value
|
|
|
+ * in the "data" parameter will be shifted out to the PHY one bit at a
|
|
|
+ * time. In order to do this, "data" must be broken down into bits.
|
|
|
+ */
|
|
|
+ mask = 0x01;
|
|
|
+ mask <<= (count - 1);
|
|
|
+
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+
|
|
|
+ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
|
|
|
+ ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
|
|
|
+
|
|
|
+ while (mask) {
|
|
|
+ /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
|
|
|
+ * then raising and lowering the Management Data Clock. A "0" is
|
|
|
+ * shifted out to the PHY by setting the MDIO bit to "0" and then
|
|
|
+ * raising and lowering the clock.
|
|
|
+ */
|
|
|
+ if (data & mask)
|
|
|
+ ctrl |= E1000_CTRL_MDIO;
|
|
|
+ else
|
|
|
+ ctrl &= ~E1000_CTRL_MDIO;
|
|
|
+
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+
|
|
|
+ udelay(10);
|
|
|
+
|
|
|
+ e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
+ e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
+
|
|
|
+ mask = mask >> 1;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Shifts data bits in from the PHY
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-*
|
|
|
-* Bits are shifted in in MSB to LSB order.
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Bits are shifted in in MSB to LSB order.
|
|
|
+ */
|
|
|
static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl;
|
|
|
- u16 data = 0;
|
|
|
- u8 i;
|
|
|
-
|
|
|
- /* In order to read a register from the PHY, we need to shift in a total
|
|
|
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
|
|
|
- * to avoid contention on the MDIO pin when a read operation is performed.
|
|
|
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
|
|
|
- * by raising the input to the Management Data Clock (setting the MDC bit),
|
|
|
- * and then reading the value of the MDIO bit.
|
|
|
- */
|
|
|
- ctrl = er32(CTRL);
|
|
|
-
|
|
|
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
|
|
|
- ctrl &= ~E1000_CTRL_MDIO_DIR;
|
|
|
- ctrl &= ~E1000_CTRL_MDIO;
|
|
|
-
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
-
|
|
|
- /* Raise and Lower the clock before reading in the data. This accounts for
|
|
|
- * the turnaround bits. The first clock occurred when we clocked out the
|
|
|
- * last bit of the Register Address.
|
|
|
- */
|
|
|
- e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
- e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
-
|
|
|
- for (data = 0, i = 0; i < 16; i++) {
|
|
|
- data = data << 1;
|
|
|
- e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
- ctrl = er32(CTRL);
|
|
|
- /* Check to see if we shifted in a "1". */
|
|
|
- if (ctrl & E1000_CTRL_MDIO)
|
|
|
- data |= 1;
|
|
|
- e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
- }
|
|
|
-
|
|
|
- e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
- e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
-
|
|
|
- return data;
|
|
|
+ u32 ctrl;
|
|
|
+ u16 data = 0;
|
|
|
+ u8 i;
|
|
|
+
|
|
|
+ /* In order to read a register from the PHY, we need to shift in a total
|
|
|
+ * of 18 bits from the PHY. The first two bit (turnaround) times are used
|
|
|
+ * to avoid contention on the MDIO pin when a read operation is performed.
|
|
|
+ * These two bits are ignored by us and thrown away. Bits are "shifted in"
|
|
|
+ * by raising the input to the Management Data Clock (setting the MDC bit),
|
|
|
+ * and then reading the value of the MDIO bit.
|
|
|
+ */
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+
|
|
|
+ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
|
|
|
+ ctrl &= ~E1000_CTRL_MDIO_DIR;
|
|
|
+ ctrl &= ~E1000_CTRL_MDIO;
|
|
|
+
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+
|
|
|
+ /* Raise and Lower the clock before reading in the data. This accounts for
|
|
|
+ * the turnaround bits. The first clock occurred when we clocked out the
|
|
|
+ * last bit of the Register Address.
|
|
|
+ */
|
|
|
+ e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
+ e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
+
|
|
|
+ for (data = 0, i = 0; i < 16; i++) {
|
|
|
+ data = data << 1;
|
|
|
+ e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+ /* Check to see if we shifted in a "1". */
|
|
|
+ if (ctrl & E1000_CTRL_MDIO)
|
|
|
+ data |= 1;
|
|
|
+ e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
+ }
|
|
|
+
|
|
|
+ e1000_raise_mdi_clk(hw, &ctrl);
|
|
|
+ e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
+
|
|
|
+ return data;
|
|
|
}
|
|
|
|
|
|
-/*****************************************************************************
|
|
|
-* Reads the value from a PHY register, if the value is on a specific non zero
|
|
|
-* page, sets the page first.
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* reg_addr - address of the PHY register to read
|
|
|
-******************************************************************************/
|
|
|
+
|
|
|
+/**
|
|
|
+ * e1000_read_phy_reg - read a phy register
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @reg_addr: address of the PHY register to read
|
|
|
+ *
|
|
|
+ * Reads the value from a PHY register, if the value is on a specific non zero
|
|
|
+ * page, sets the page first.
|
|
|
+ */
|
|
|
s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
|
|
|
{
|
|
|
- u32 ret_val;
|
|
|
+ u32 ret_val;
|
|
|
|
|
|
- DEBUGFUNC("e1000_read_phy_reg");
|
|
|
+ DEBUGFUNC("e1000_read_phy_reg");
|
|
|
|
|
|
- if ((hw->phy_type == e1000_phy_igp) &&
|
|
|
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
|
|
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
- (u16)reg_addr);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
+ if ((hw->phy_type == e1000_phy_igp) &&
|
|
|
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
|
|
+ ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
+ (u16) reg_addr);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
|
|
|
+ phy_data);
|
|
|
|
|
|
- ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
|
|
|
- phy_data);
|
|
|
- return ret_val;
|
|
|
+ return ret_val;
|
|
|
}
|
|
|
|
|
|
static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
|
|
|
u16 *phy_data)
|
|
|
{
|
|
|
- u32 i;
|
|
|
- u32 mdic = 0;
|
|
|
- const u32 phy_addr = 1;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_read_phy_reg_ex");
|
|
|
-
|
|
|
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
|
|
|
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
|
|
- return -E1000_ERR_PARAM;
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->mac_type > e1000_82543) {
|
|
|
- /* Set up Op-code, Phy Address, and register address in the MDI
|
|
|
- * Control register. The MAC will take care of interfacing with the
|
|
|
- * PHY to retrieve the desired data.
|
|
|
- */
|
|
|
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
|
|
|
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
|
|
|
- (E1000_MDIC_OP_READ));
|
|
|
-
|
|
|
- ew32(MDIC, mdic);
|
|
|
-
|
|
|
- /* Poll the ready bit to see if the MDI read completed */
|
|
|
- for (i = 0; i < 64; i++) {
|
|
|
- udelay(50);
|
|
|
- mdic = er32(MDIC);
|
|
|
- if (mdic & E1000_MDIC_READY) break;
|
|
|
- }
|
|
|
- if (!(mdic & E1000_MDIC_READY)) {
|
|
|
- DEBUGOUT("MDI Read did not complete\n");
|
|
|
- return -E1000_ERR_PHY;
|
|
|
- }
|
|
|
- if (mdic & E1000_MDIC_ERROR) {
|
|
|
- DEBUGOUT("MDI Error\n");
|
|
|
- return -E1000_ERR_PHY;
|
|
|
- }
|
|
|
- *phy_data = (u16)mdic;
|
|
|
- } else {
|
|
|
- /* We must first send a preamble through the MDIO pin to signal the
|
|
|
- * beginning of an MII instruction. This is done by sending 32
|
|
|
- * consecutive "1" bits.
|
|
|
- */
|
|
|
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
|
|
-
|
|
|
- /* Now combine the next few fields that are required for a read
|
|
|
- * operation. We use this method instead of calling the
|
|
|
- * e1000_shift_out_mdi_bits routine five different times. The format of
|
|
|
- * a MII read instruction consists of a shift out of 14 bits and is
|
|
|
- * defined as follows:
|
|
|
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
|
|
|
- * followed by a shift in of 18 bits. This first two bits shifted in
|
|
|
- * are TurnAround bits used to avoid contention on the MDIO pin when a
|
|
|
- * READ operation is performed. These two bits are thrown away
|
|
|
- * followed by a shift in of 16 bits which contains the desired data.
|
|
|
- */
|
|
|
- mdic = ((reg_addr) | (phy_addr << 5) |
|
|
|
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
|
|
|
-
|
|
|
- e1000_shift_out_mdi_bits(hw, mdic, 14);
|
|
|
-
|
|
|
- /* Now that we've shifted out the read command to the MII, we need to
|
|
|
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
|
|
|
- * register address.
|
|
|
- */
|
|
|
- *phy_data = e1000_shift_in_mdi_bits(hw);
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 i;
|
|
|
+ u32 mdic = 0;
|
|
|
+ const u32 phy_addr = 1;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_read_phy_reg_ex");
|
|
|
+
|
|
|
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
|
|
|
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
|
|
+ return -E1000_ERR_PARAM;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->mac_type > e1000_82543) {
|
|
|
+ /* Set up Op-code, Phy Address, and register address in the MDI
|
|
|
+ * Control register. The MAC will take care of interfacing with the
|
|
|
+ * PHY to retrieve the desired data.
|
|
|
+ */
|
|
|
+ mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
|
|
|
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
|
|
|
+ (E1000_MDIC_OP_READ));
|
|
|
+
|
|
|
+ ew32(MDIC, mdic);
|
|
|
+
|
|
|
+ /* Poll the ready bit to see if the MDI read completed */
|
|
|
+ for (i = 0; i < 64; i++) {
|
|
|
+ udelay(50);
|
|
|
+ mdic = er32(MDIC);
|
|
|
+ if (mdic & E1000_MDIC_READY)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (!(mdic & E1000_MDIC_READY)) {
|
|
|
+ DEBUGOUT("MDI Read did not complete\n");
|
|
|
+ return -E1000_ERR_PHY;
|
|
|
+ }
|
|
|
+ if (mdic & E1000_MDIC_ERROR) {
|
|
|
+ DEBUGOUT("MDI Error\n");
|
|
|
+ return -E1000_ERR_PHY;
|
|
|
+ }
|
|
|
+ *phy_data = (u16) mdic;
|
|
|
+ } else {
|
|
|
+ /* We must first send a preamble through the MDIO pin to signal the
|
|
|
+ * beginning of an MII instruction. This is done by sending 32
|
|
|
+ * consecutive "1" bits.
|
|
|
+ */
|
|
|
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
|
|
+
|
|
|
+ /* Now combine the next few fields that are required for a read
|
|
|
+ * operation. We use this method instead of calling the
|
|
|
+ * e1000_shift_out_mdi_bits routine five different times. The format of
|
|
|
+ * a MII read instruction consists of a shift out of 14 bits and is
|
|
|
+ * defined as follows:
|
|
|
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
|
|
|
+ * followed by a shift in of 18 bits. This first two bits shifted in
|
|
|
+ * are TurnAround bits used to avoid contention on the MDIO pin when a
|
|
|
+ * READ operation is performed. These two bits are thrown away
|
|
|
+ * followed by a shift in of 16 bits which contains the desired data.
|
|
|
+ */
|
|
|
+ mdic = ((reg_addr) | (phy_addr << 5) |
|
|
|
+ (PHY_OP_READ << 10) | (PHY_SOF << 12));
|
|
|
+
|
|
|
+ e1000_shift_out_mdi_bits(hw, mdic, 14);
|
|
|
+
|
|
|
+ /* Now that we've shifted out the read command to the MII, we need to
|
|
|
+ * "shift in" the 16-bit value (18 total bits) of the requested PHY
|
|
|
+ * register address.
|
|
|
+ */
|
|
|
+ *phy_data = e1000_shift_in_mdi_bits(hw);
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Writes a value to a PHY register
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* reg_addr - address of the PHY register to write
|
|
|
-* data - data to write to the PHY
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_write_phy_reg - write a phy register
|
|
|
+ *
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @reg_addr: address of the PHY register to write
|
|
|
+ * @data: data to write to the PHY
|
|
|
+
|
|
|
+ * Writes a value to a PHY register
|
|
|
+ */
|
|
|
s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
|
|
|
{
|
|
|
- u32 ret_val;
|
|
|
+ u32 ret_val;
|
|
|
|
|
|
- DEBUGFUNC("e1000_write_phy_reg");
|
|
|
+ DEBUGFUNC("e1000_write_phy_reg");
|
|
|
|
|
|
- if ((hw->phy_type == e1000_phy_igp) &&
|
|
|
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
|
|
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
- (u16)reg_addr);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
+ if ((hw->phy_type == e1000_phy_igp) &&
|
|
|
+ (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
|
|
+ ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
|
+ (u16) reg_addr);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
|
|
|
- ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
|
|
|
- phy_data);
|
|
|
+ ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
|
|
|
+ phy_data);
|
|
|
|
|
|
- return ret_val;
|
|
|
+ return ret_val;
|
|
|
}
|
|
|
|
|
|
static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
|
|
|
u16 phy_data)
|
|
|
{
|
|
|
- u32 i;
|
|
|
- u32 mdic = 0;
|
|
|
- const u32 phy_addr = 1;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_write_phy_reg_ex");
|
|
|
-
|
|
|
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
|
|
|
- DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
|
|
- return -E1000_ERR_PARAM;
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->mac_type > e1000_82543) {
|
|
|
- /* Set up Op-code, Phy Address, register address, and data intended
|
|
|
- * for the PHY register in the MDI Control register. The MAC will take
|
|
|
- * care of interfacing with the PHY to send the desired data.
|
|
|
- */
|
|
|
- mdic = (((u32)phy_data) |
|
|
|
- (reg_addr << E1000_MDIC_REG_SHIFT) |
|
|
|
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
|
|
|
- (E1000_MDIC_OP_WRITE));
|
|
|
-
|
|
|
- ew32(MDIC, mdic);
|
|
|
-
|
|
|
- /* Poll the ready bit to see if the MDI read completed */
|
|
|
- for (i = 0; i < 641; i++) {
|
|
|
- udelay(5);
|
|
|
- mdic = er32(MDIC);
|
|
|
- if (mdic & E1000_MDIC_READY) break;
|
|
|
- }
|
|
|
- if (!(mdic & E1000_MDIC_READY)) {
|
|
|
- DEBUGOUT("MDI Write did not complete\n");
|
|
|
- return -E1000_ERR_PHY;
|
|
|
- }
|
|
|
- } else {
|
|
|
- /* We'll need to use the SW defined pins to shift the write command
|
|
|
- * out to the PHY. We first send a preamble to the PHY to signal the
|
|
|
- * beginning of the MII instruction. This is done by sending 32
|
|
|
- * consecutive "1" bits.
|
|
|
- */
|
|
|
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
|
|
-
|
|
|
- /* Now combine the remaining required fields that will indicate a
|
|
|
- * write operation. We use this method instead of calling the
|
|
|
- * e1000_shift_out_mdi_bits routine for each field in the command. The
|
|
|
- * format of a MII write instruction is as follows:
|
|
|
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
|
|
|
- */
|
|
|
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
|
|
|
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
|
|
|
- mdic <<= 16;
|
|
|
- mdic |= (u32)phy_data;
|
|
|
-
|
|
|
- e1000_shift_out_mdi_bits(hw, mdic, 32);
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 i;
|
|
|
+ u32 mdic = 0;
|
|
|
+ const u32 phy_addr = 1;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_write_phy_reg_ex");
|
|
|
+
|
|
|
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
|
|
|
+ DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
|
|
+ return -E1000_ERR_PARAM;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->mac_type > e1000_82543) {
|
|
|
+ /* Set up Op-code, Phy Address, register address, and data intended
|
|
|
+ * for the PHY register in the MDI Control register. The MAC will take
|
|
|
+ * care of interfacing with the PHY to send the desired data.
|
|
|
+ */
|
|
|
+ mdic = (((u32) phy_data) |
|
|
|
+ (reg_addr << E1000_MDIC_REG_SHIFT) |
|
|
|
+ (phy_addr << E1000_MDIC_PHY_SHIFT) |
|
|
|
+ (E1000_MDIC_OP_WRITE));
|
|
|
+
|
|
|
+ ew32(MDIC, mdic);
|
|
|
+
|
|
|
+ /* Poll the ready bit to see if the MDI read completed */
|
|
|
+ for (i = 0; i < 641; i++) {
|
|
|
+ udelay(5);
|
|
|
+ mdic = er32(MDIC);
|
|
|
+ if (mdic & E1000_MDIC_READY)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ if (!(mdic & E1000_MDIC_READY)) {
|
|
|
+ DEBUGOUT("MDI Write did not complete\n");
|
|
|
+ return -E1000_ERR_PHY;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ /* We'll need to use the SW defined pins to shift the write command
|
|
|
+ * out to the PHY. We first send a preamble to the PHY to signal the
|
|
|
+ * beginning of the MII instruction. This is done by sending 32
|
|
|
+ * consecutive "1" bits.
|
|
|
+ */
|
|
|
+ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
|
|
+
|
|
|
+ /* Now combine the remaining required fields that will indicate a
|
|
|
+ * write operation. We use this method instead of calling the
|
|
|
+ * e1000_shift_out_mdi_bits routine for each field in the command. The
|
|
|
+ * format of a MII write instruction is as follows:
|
|
|
+ * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
|
|
|
+ */
|
|
|
+ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
|
|
|
+ (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
|
|
|
+ mdic <<= 16;
|
|
|
+ mdic |= (u32) phy_data;
|
|
|
+
|
|
|
+ e1000_shift_out_mdi_bits(hw, mdic, 32);
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Returns the PHY to the power-on reset state
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_phy_hw_reset - reset the phy, hardware style
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Returns the PHY to the power-on reset state
|
|
|
+ */
|
|
|
s32 e1000_phy_hw_reset(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl, ctrl_ext;
|
|
|
- u32 led_ctrl;
|
|
|
- s32 ret_val;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_hw_reset");
|
|
|
-
|
|
|
- DEBUGOUT("Resetting Phy...\n");
|
|
|
-
|
|
|
- if (hw->mac_type > e1000_82543) {
|
|
|
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
|
|
|
- * bit. Then, take it out of reset.
|
|
|
- * For e1000 hardware, we delay for 10ms between the assert
|
|
|
- * and deassert.
|
|
|
- */
|
|
|
- ctrl = er32(CTRL);
|
|
|
- ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
-
|
|
|
- msleep(10);
|
|
|
-
|
|
|
- ew32(CTRL, ctrl);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- } else {
|
|
|
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
|
|
|
- * bit to put the PHY into reset. Then, take it out of reset.
|
|
|
- */
|
|
|
- ctrl_ext = er32(CTRL_EXT);
|
|
|
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
|
|
|
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
|
|
|
- ew32(CTRL_EXT, ctrl_ext);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- msleep(10);
|
|
|
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
|
|
|
- ew32(CTRL_EXT, ctrl_ext);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- }
|
|
|
- udelay(150);
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
- /* Configure activity LED after PHY reset */
|
|
|
- led_ctrl = er32(LEDCTL);
|
|
|
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
|
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
|
- ew32(LEDCTL, led_ctrl);
|
|
|
- }
|
|
|
-
|
|
|
- /* Wait for FW to finish PHY configuration. */
|
|
|
- ret_val = e1000_get_phy_cfg_done(hw);
|
|
|
- if (ret_val != E1000_SUCCESS)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- return ret_val;
|
|
|
+ u32 ctrl, ctrl_ext;
|
|
|
+ u32 led_ctrl;
|
|
|
+ s32 ret_val;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_hw_reset");
|
|
|
+
|
|
|
+ DEBUGOUT("Resetting Phy...\n");
|
|
|
+
|
|
|
+ if (hw->mac_type > e1000_82543) {
|
|
|
+ /* Read the device control register and assert the E1000_CTRL_PHY_RST
|
|
|
+ * bit. Then, take it out of reset.
|
|
|
+ * For e1000 hardware, we delay for 10ms between the assert
|
|
|
+ * and deassert.
|
|
|
+ */
|
|
|
+ ctrl = er32(CTRL);
|
|
|
+ ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+
|
|
|
+ msleep(10);
|
|
|
+
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+
|
|
|
+ } else {
|
|
|
+ /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
|
|
|
+ * bit to put the PHY into reset. Then, take it out of reset.
|
|
|
+ */
|
|
|
+ ctrl_ext = er32(CTRL_EXT);
|
|
|
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
|
|
|
+ ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
|
|
|
+ ew32(CTRL_EXT, ctrl_ext);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ msleep(10);
|
|
|
+ ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
|
|
|
+ ew32(CTRL_EXT, ctrl_ext);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ }
|
|
|
+ udelay(150);
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
|
+ /* Configure activity LED after PHY reset */
|
|
|
+ led_ctrl = er32(LEDCTL);
|
|
|
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
|
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
|
+ ew32(LEDCTL, led_ctrl);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Wait for FW to finish PHY configuration. */
|
|
|
+ ret_val = e1000_get_phy_cfg_done(hw);
|
|
|
+ if (ret_val != E1000_SUCCESS)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ return ret_val;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Resets the PHY
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-*
|
|
|
-* Sets bit 15 of the MII Control register
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_phy_reset - reset the phy to commit settings
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Resets the PHY
|
|
|
+ * Sets bit 15 of the MII Control register
|
|
|
+ */
|
|
|
s32 e1000_phy_reset(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_reset");
|
|
|
-
|
|
|
- switch (hw->phy_type) {
|
|
|
- case e1000_phy_igp:
|
|
|
- ret_val = e1000_phy_hw_reset(hw);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- break;
|
|
|
- default:
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data |= MII_CR_RESET;
|
|
|
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- udelay(1);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->phy_type == e1000_phy_igp)
|
|
|
- e1000_phy_init_script(hw);
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_reset");
|
|
|
+
|
|
|
+ switch (hw->phy_type) {
|
|
|
+ case e1000_phy_igp:
|
|
|
+ ret_val = e1000_phy_hw_reset(hw);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= MII_CR_RESET;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ udelay(1);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_igp)
|
|
|
+ e1000_phy_init_script(hw);
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Probes the expected PHY address for known PHY IDs
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_detect_gig_phy - check the phy type
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Probes the expected PHY address for known PHY IDs
|
|
|
+ */
|
|
|
static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 phy_init_status, ret_val;
|
|
|
- u16 phy_id_high, phy_id_low;
|
|
|
- bool match = false;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_detect_gig_phy");
|
|
|
-
|
|
|
- if (hw->phy_id != 0)
|
|
|
- return E1000_SUCCESS;
|
|
|
-
|
|
|
- /* Read the PHY ID Registers to identify which PHY is onboard. */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- hw->phy_id = (u32)(phy_id_high << 16);
|
|
|
- udelay(20);
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
|
|
|
- hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82543:
|
|
|
- if (hw->phy_id == M88E1000_E_PHY_ID) match = true;
|
|
|
- break;
|
|
|
- case e1000_82544:
|
|
|
- if (hw->phy_id == M88E1000_I_PHY_ID) match = true;
|
|
|
- break;
|
|
|
- case e1000_82540:
|
|
|
- case e1000_82545:
|
|
|
- case e1000_82545_rev_3:
|
|
|
- case e1000_82546:
|
|
|
- case e1000_82546_rev_3:
|
|
|
- if (hw->phy_id == M88E1011_I_PHY_ID) match = true;
|
|
|
- break;
|
|
|
- case e1000_82541:
|
|
|
- case e1000_82541_rev_2:
|
|
|
- case e1000_82547:
|
|
|
- case e1000_82547_rev_2:
|
|
|
- if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true;
|
|
|
- break;
|
|
|
- default:
|
|
|
- DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
|
|
|
- return -E1000_ERR_CONFIG;
|
|
|
- }
|
|
|
- phy_init_status = e1000_set_phy_type(hw);
|
|
|
-
|
|
|
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
|
|
|
- DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
- DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
|
|
|
- return -E1000_ERR_PHY;
|
|
|
+ s32 phy_init_status, ret_val;
|
|
|
+ u16 phy_id_high, phy_id_low;
|
|
|
+ bool match = false;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_detect_gig_phy");
|
|
|
+
|
|
|
+ if (hw->phy_id != 0)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* Read the PHY ID Registers to identify which PHY is onboard. */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ hw->phy_id = (u32) (phy_id_high << 16);
|
|
|
+ udelay(20);
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
|
|
|
+ hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82543:
|
|
|
+ if (hw->phy_id == M88E1000_E_PHY_ID)
|
|
|
+ match = true;
|
|
|
+ break;
|
|
|
+ case e1000_82544:
|
|
|
+ if (hw->phy_id == M88E1000_I_PHY_ID)
|
|
|
+ match = true;
|
|
|
+ break;
|
|
|
+ case e1000_82540:
|
|
|
+ case e1000_82545:
|
|
|
+ case e1000_82545_rev_3:
|
|
|
+ case e1000_82546:
|
|
|
+ case e1000_82546_rev_3:
|
|
|
+ if (hw->phy_id == M88E1011_I_PHY_ID)
|
|
|
+ match = true;
|
|
|
+ break;
|
|
|
+ case e1000_82541:
|
|
|
+ case e1000_82541_rev_2:
|
|
|
+ case e1000_82547:
|
|
|
+ case e1000_82547_rev_2:
|
|
|
+ if (hw->phy_id == IGP01E1000_I_PHY_ID)
|
|
|
+ match = true;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ }
|
|
|
+ phy_init_status = e1000_set_phy_type(hw);
|
|
|
+
|
|
|
+ if ((match) && (phy_init_status == E1000_SUCCESS)) {
|
|
|
+ DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+ DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
|
|
|
+ return -E1000_ERR_PHY;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Resets the PHY's DSP
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_phy_reset_dsp - reset DSP
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
+ * Resets the PHY's DSP
|
|
|
+ */
|
|
|
static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- DEBUGFUNC("e1000_phy_reset_dsp");
|
|
|
-
|
|
|
- do {
|
|
|
- ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
|
|
|
- if (ret_val) break;
|
|
|
- ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
|
|
|
- if (ret_val) break;
|
|
|
- ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
|
|
|
- if (ret_val) break;
|
|
|
- ret_val = E1000_SUCCESS;
|
|
|
- } while (0);
|
|
|
-
|
|
|
- return ret_val;
|
|
|
+ s32 ret_val;
|
|
|
+ DEBUGFUNC("e1000_phy_reset_dsp");
|
|
|
+
|
|
|
+ do {
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
|
|
|
+ if (ret_val)
|
|
|
+ break;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
|
|
|
+ if (ret_val)
|
|
|
+ break;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
|
|
|
+ if (ret_val)
|
|
|
+ break;
|
|
|
+ ret_val = E1000_SUCCESS;
|
|
|
+ } while (0);
|
|
|
+
|
|
|
+ return ret_val;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Get PHY information from various PHY registers for igp PHY only.
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* phy_info - PHY information structure
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_phy_igp_get_info - get igp specific registers
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @phy_info: PHY information structure
|
|
|
+ *
|
|
|
+ * Get PHY information from various PHY registers for igp PHY only.
|
|
|
+ */
|
|
|
static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
|
|
|
struct e1000_phy_info *phy_info)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data, min_length, max_length, average;
|
|
|
- e1000_rev_polarity polarity;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_igp_get_info");
|
|
|
-
|
|
|
- /* The downshift status is checked only once, after link is established,
|
|
|
- * and it stored in the hw->speed_downgraded parameter. */
|
|
|
- phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
|
|
|
-
|
|
|
- /* IGP01E1000 does not need to support it. */
|
|
|
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
|
|
|
-
|
|
|
- /* IGP01E1000 always correct polarity reversal */
|
|
|
- phy_info->polarity_correction = e1000_polarity_reversal_enabled;
|
|
|
-
|
|
|
- /* Check polarity status */
|
|
|
- ret_val = e1000_check_polarity(hw, &polarity);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_info->cable_polarity = polarity;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
|
|
|
- IGP01E1000_PSSR_MDIX_SHIFT);
|
|
|
-
|
|
|
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
|
|
- IGP01E1000_PSSR_SPEED_1000MBPS) {
|
|
|
- /* Local/Remote Receiver Information are only valid at 1000 Mbps */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
|
|
|
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
|
|
|
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
|
|
|
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
|
|
|
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
-
|
|
|
- /* Get cable length */
|
|
|
- ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Translate to old method */
|
|
|
- average = (max_length + min_length) / 2;
|
|
|
-
|
|
|
- if (average <= e1000_igp_cable_length_50)
|
|
|
- phy_info->cable_length = e1000_cable_length_50;
|
|
|
- else if (average <= e1000_igp_cable_length_80)
|
|
|
- phy_info->cable_length = e1000_cable_length_50_80;
|
|
|
- else if (average <= e1000_igp_cable_length_110)
|
|
|
- phy_info->cable_length = e1000_cable_length_80_110;
|
|
|
- else if (average <= e1000_igp_cable_length_140)
|
|
|
- phy_info->cable_length = e1000_cable_length_110_140;
|
|
|
- else
|
|
|
- phy_info->cable_length = e1000_cable_length_140;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data, min_length, max_length, average;
|
|
|
+ e1000_rev_polarity polarity;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_igp_get_info");
|
|
|
+
|
|
|
+ /* The downshift status is checked only once, after link is established,
|
|
|
+ * and it stored in the hw->speed_downgraded parameter. */
|
|
|
+ phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
|
|
|
+
|
|
|
+ /* IGP01E1000 does not need to support it. */
|
|
|
+ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
|
|
|
+
|
|
|
+ /* IGP01E1000 always correct polarity reversal */
|
|
|
+ phy_info->polarity_correction = e1000_polarity_reversal_enabled;
|
|
|
+
|
|
|
+ /* Check polarity status */
|
|
|
+ ret_val = e1000_check_polarity(hw, &polarity);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_info->cable_polarity = polarity;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_info->mdix_mode =
|
|
|
+ (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
|
|
|
+ IGP01E1000_PSSR_MDIX_SHIFT);
|
|
|
+
|
|
|
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
|
|
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
|
|
|
+ /* Local/Remote Receiver Information are only valid at 1000 Mbps */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
|
|
|
+ SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
|
|
|
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
+ phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
|
|
|
+ SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
|
|
|
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
+
|
|
|
+ /* Get cable length */
|
|
|
+ ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Translate to old method */
|
|
|
+ average = (max_length + min_length) / 2;
|
|
|
+
|
|
|
+ if (average <= e1000_igp_cable_length_50)
|
|
|
+ phy_info->cable_length = e1000_cable_length_50;
|
|
|
+ else if (average <= e1000_igp_cable_length_80)
|
|
|
+ phy_info->cable_length = e1000_cable_length_50_80;
|
|
|
+ else if (average <= e1000_igp_cable_length_110)
|
|
|
+ phy_info->cable_length = e1000_cable_length_80_110;
|
|
|
+ else if (average <= e1000_igp_cable_length_140)
|
|
|
+ phy_info->cable_length = e1000_cable_length_110_140;
|
|
|
+ else
|
|
|
+ phy_info->cable_length = e1000_cable_length_140;
|
|
|
+ }
|
|
|
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Get PHY information from various PHY registers fot m88 PHY only.
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* phy_info - PHY information structure
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_phy_m88_get_info - get m88 specific registers
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @phy_info: PHY information structure
|
|
|
+ *
|
|
|
+ * Get PHY information from various PHY registers for m88 PHY only.
|
|
|
+ */
|
|
|
static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
|
|
|
struct e1000_phy_info *phy_info)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
- e1000_rev_polarity polarity;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_m88_get_info");
|
|
|
-
|
|
|
- /* The downshift status is checked only once, after link is established,
|
|
|
- * and it stored in the hw->speed_downgraded parameter. */
|
|
|
- phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_info->extended_10bt_distance =
|
|
|
- ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
|
|
|
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
|
|
|
- e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
|
|
|
-
|
|
|
- phy_info->polarity_correction =
|
|
|
- ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
|
|
|
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
|
|
|
- e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
|
|
|
-
|
|
|
- /* Check polarity status */
|
|
|
- ret_val = e1000_check_polarity(hw, &polarity);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- phy_info->cable_polarity = polarity;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
|
|
|
- M88E1000_PSSR_MDIX_SHIFT);
|
|
|
-
|
|
|
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
|
|
|
- /* Cable Length Estimation and Local/Remote Receiver Information
|
|
|
- * are only valid at 1000 Mbps.
|
|
|
- */
|
|
|
- phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
|
|
|
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
|
|
|
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
|
|
|
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
|
|
|
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
|
|
|
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+ e1000_rev_polarity polarity;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_m88_get_info");
|
|
|
+
|
|
|
+ /* The downshift status is checked only once, after link is established,
|
|
|
+ * and it stored in the hw->speed_downgraded parameter. */
|
|
|
+ phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_info->extended_10bt_distance =
|
|
|
+ ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
|
|
|
+ M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
|
|
|
+ e1000_10bt_ext_dist_enable_lower :
|
|
|
+ e1000_10bt_ext_dist_enable_normal;
|
|
|
+
|
|
|
+ phy_info->polarity_correction =
|
|
|
+ ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
|
|
|
+ M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
|
|
|
+ e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
|
|
|
+
|
|
|
+ /* Check polarity status */
|
|
|
+ ret_val = e1000_check_polarity(hw, &polarity);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ phy_info->cable_polarity = polarity;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_info->mdix_mode =
|
|
|
+ (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
|
|
|
+ M88E1000_PSSR_MDIX_SHIFT);
|
|
|
+
|
|
|
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
|
|
|
+ /* Cable Length Estimation and Local/Remote Receiver Information
|
|
|
+ * are only valid at 1000 Mbps.
|
|
|
+ */
|
|
|
+ phy_info->cable_length =
|
|
|
+ (e1000_cable_length) ((phy_data &
|
|
|
+ M88E1000_PSSR_CABLE_LENGTH) >>
|
|
|
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT);
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
|
|
|
+ SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
|
|
|
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
+ phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
|
|
|
+ SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
|
|
|
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
-* Get PHY information from various PHY registers
|
|
|
-*
|
|
|
-* hw - Struct containing variables accessed by shared code
|
|
|
-* phy_info - PHY information structure
|
|
|
-******************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_phy_get_info - request phy info
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @phy_info: PHY information structure
|
|
|
+ *
|
|
|
+ * Get PHY information from various PHY registers
|
|
|
+ */
|
|
|
s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_phy_get_info");
|
|
|
-
|
|
|
- phy_info->cable_length = e1000_cable_length_undefined;
|
|
|
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
|
|
|
- phy_info->cable_polarity = e1000_rev_polarity_undefined;
|
|
|
- phy_info->downshift = e1000_downshift_undefined;
|
|
|
- phy_info->polarity_correction = e1000_polarity_reversal_undefined;
|
|
|
- phy_info->mdix_mode = e1000_auto_x_mode_undefined;
|
|
|
- phy_info->local_rx = e1000_1000t_rx_status_undefined;
|
|
|
- phy_info->remote_rx = e1000_1000t_rx_status_undefined;
|
|
|
-
|
|
|
- if (hw->media_type != e1000_media_type_copper) {
|
|
|
- DEBUGOUT("PHY info is only valid for copper media\n");
|
|
|
- return -E1000_ERR_CONFIG;
|
|
|
- }
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
|
|
|
- DEBUGOUT("PHY info is only valid if link is up\n");
|
|
|
- return -E1000_ERR_CONFIG;
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->phy_type == e1000_phy_igp)
|
|
|
- return e1000_phy_igp_get_info(hw, phy_info);
|
|
|
- else
|
|
|
- return e1000_phy_m88_get_info(hw, phy_info);
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_phy_get_info");
|
|
|
+
|
|
|
+ phy_info->cable_length = e1000_cable_length_undefined;
|
|
|
+ phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
|
|
|
+ phy_info->cable_polarity = e1000_rev_polarity_undefined;
|
|
|
+ phy_info->downshift = e1000_downshift_undefined;
|
|
|
+ phy_info->polarity_correction = e1000_polarity_reversal_undefined;
|
|
|
+ phy_info->mdix_mode = e1000_auto_x_mode_undefined;
|
|
|
+ phy_info->local_rx = e1000_1000t_rx_status_undefined;
|
|
|
+ phy_info->remote_rx = e1000_1000t_rx_status_undefined;
|
|
|
+
|
|
|
+ if (hw->media_type != e1000_media_type_copper) {
|
|
|
+ DEBUGOUT("PHY info is only valid for copper media\n");
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
|
|
|
+ DEBUGOUT("PHY info is only valid if link is up\n");
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_igp)
|
|
|
+ return e1000_phy_igp_get_info(hw, phy_info);
|
|
|
+ else
|
|
|
+ return e1000_phy_m88_get_info(hw, phy_info);
|
|
|
}
|
|
|
|
|
|
s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
|
|
|
{
|
|
|
- DEBUGFUNC("e1000_validate_mdi_settings");
|
|
|
-
|
|
|
- if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
|
|
|
- DEBUGOUT("Invalid MDI setting detected\n");
|
|
|
- hw->mdix = 1;
|
|
|
- return -E1000_ERR_CONFIG;
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
-}
|
|
|
+ DEBUGFUNC("e1000_validate_mdi_settings");
|
|
|
|
|
|
+ if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
|
|
|
+ DEBUGOUT("Invalid MDI setting detected\n");
|
|
|
+ hw->mdix = 1;
|
|
|
+ return -E1000_ERR_CONFIG;
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
+}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
+ * e1000_init_eeprom_params - initialize sw eeprom vars
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
* Sets up eeprom variables in the hw struct. Must be called after mac_type
|
|
|
* is configured.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_init_eeprom_params(struct e1000_hw *hw)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- u32 eecd = er32(EECD);
|
|
|
- s32 ret_val = E1000_SUCCESS;
|
|
|
- u16 eeprom_size;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_init_eeprom_params");
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- case e1000_82543:
|
|
|
- case e1000_82544:
|
|
|
- eeprom->type = e1000_eeprom_microwire;
|
|
|
- eeprom->word_size = 64;
|
|
|
- eeprom->opcode_bits = 3;
|
|
|
- eeprom->address_bits = 6;
|
|
|
- eeprom->delay_usec = 50;
|
|
|
- eeprom->use_eerd = false;
|
|
|
- eeprom->use_eewr = false;
|
|
|
- break;
|
|
|
- case e1000_82540:
|
|
|
- case e1000_82545:
|
|
|
- case e1000_82545_rev_3:
|
|
|
- case e1000_82546:
|
|
|
- case e1000_82546_rev_3:
|
|
|
- eeprom->type = e1000_eeprom_microwire;
|
|
|
- eeprom->opcode_bits = 3;
|
|
|
- eeprom->delay_usec = 50;
|
|
|
- if (eecd & E1000_EECD_SIZE) {
|
|
|
- eeprom->word_size = 256;
|
|
|
- eeprom->address_bits = 8;
|
|
|
- } else {
|
|
|
- eeprom->word_size = 64;
|
|
|
- eeprom->address_bits = 6;
|
|
|
- }
|
|
|
- eeprom->use_eerd = false;
|
|
|
- eeprom->use_eewr = false;
|
|
|
- break;
|
|
|
- case e1000_82541:
|
|
|
- case e1000_82541_rev_2:
|
|
|
- case e1000_82547:
|
|
|
- case e1000_82547_rev_2:
|
|
|
- if (eecd & E1000_EECD_TYPE) {
|
|
|
- eeprom->type = e1000_eeprom_spi;
|
|
|
- eeprom->opcode_bits = 8;
|
|
|
- eeprom->delay_usec = 1;
|
|
|
- if (eecd & E1000_EECD_ADDR_BITS) {
|
|
|
- eeprom->page_size = 32;
|
|
|
- eeprom->address_bits = 16;
|
|
|
- } else {
|
|
|
- eeprom->page_size = 8;
|
|
|
- eeprom->address_bits = 8;
|
|
|
- }
|
|
|
- } else {
|
|
|
- eeprom->type = e1000_eeprom_microwire;
|
|
|
- eeprom->opcode_bits = 3;
|
|
|
- eeprom->delay_usec = 50;
|
|
|
- if (eecd & E1000_EECD_ADDR_BITS) {
|
|
|
- eeprom->word_size = 256;
|
|
|
- eeprom->address_bits = 8;
|
|
|
- } else {
|
|
|
- eeprom->word_size = 64;
|
|
|
- eeprom->address_bits = 6;
|
|
|
- }
|
|
|
- }
|
|
|
- eeprom->use_eerd = false;
|
|
|
- eeprom->use_eewr = false;
|
|
|
- break;
|
|
|
- default:
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- if (eeprom->type == e1000_eeprom_spi) {
|
|
|
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
|
|
|
- * 32KB (incremented by powers of 2).
|
|
|
- */
|
|
|
- /* Set to default value for initial eeprom read. */
|
|
|
- eeprom->word_size = 64;
|
|
|
- ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
|
|
|
- /* 256B eeprom size was not supported in earlier hardware, so we
|
|
|
- * bump eeprom_size up one to ensure that "1" (which maps to 256B)
|
|
|
- * is never the result used in the shifting logic below. */
|
|
|
- if (eeprom_size)
|
|
|
- eeprom_size++;
|
|
|
-
|
|
|
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
|
|
|
- }
|
|
|
- return ret_val;
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ u32 eecd = er32(EECD);
|
|
|
+ s32 ret_val = E1000_SUCCESS;
|
|
|
+ u16 eeprom_size;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_init_eeprom_params");
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ case e1000_82543:
|
|
|
+ case e1000_82544:
|
|
|
+ eeprom->type = e1000_eeprom_microwire;
|
|
|
+ eeprom->word_size = 64;
|
|
|
+ eeprom->opcode_bits = 3;
|
|
|
+ eeprom->address_bits = 6;
|
|
|
+ eeprom->delay_usec = 50;
|
|
|
+ eeprom->use_eerd = false;
|
|
|
+ eeprom->use_eewr = false;
|
|
|
+ break;
|
|
|
+ case e1000_82540:
|
|
|
+ case e1000_82545:
|
|
|
+ case e1000_82545_rev_3:
|
|
|
+ case e1000_82546:
|
|
|
+ case e1000_82546_rev_3:
|
|
|
+ eeprom->type = e1000_eeprom_microwire;
|
|
|
+ eeprom->opcode_bits = 3;
|
|
|
+ eeprom->delay_usec = 50;
|
|
|
+ if (eecd & E1000_EECD_SIZE) {
|
|
|
+ eeprom->word_size = 256;
|
|
|
+ eeprom->address_bits = 8;
|
|
|
+ } else {
|
|
|
+ eeprom->word_size = 64;
|
|
|
+ eeprom->address_bits = 6;
|
|
|
+ }
|
|
|
+ eeprom->use_eerd = false;
|
|
|
+ eeprom->use_eewr = false;
|
|
|
+ break;
|
|
|
+ case e1000_82541:
|
|
|
+ case e1000_82541_rev_2:
|
|
|
+ case e1000_82547:
|
|
|
+ case e1000_82547_rev_2:
|
|
|
+ if (eecd & E1000_EECD_TYPE) {
|
|
|
+ eeprom->type = e1000_eeprom_spi;
|
|
|
+ eeprom->opcode_bits = 8;
|
|
|
+ eeprom->delay_usec = 1;
|
|
|
+ if (eecd & E1000_EECD_ADDR_BITS) {
|
|
|
+ eeprom->page_size = 32;
|
|
|
+ eeprom->address_bits = 16;
|
|
|
+ } else {
|
|
|
+ eeprom->page_size = 8;
|
|
|
+ eeprom->address_bits = 8;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ eeprom->type = e1000_eeprom_microwire;
|
|
|
+ eeprom->opcode_bits = 3;
|
|
|
+ eeprom->delay_usec = 50;
|
|
|
+ if (eecd & E1000_EECD_ADDR_BITS) {
|
|
|
+ eeprom->word_size = 256;
|
|
|
+ eeprom->address_bits = 8;
|
|
|
+ } else {
|
|
|
+ eeprom->word_size = 64;
|
|
|
+ eeprom->address_bits = 6;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ eeprom->use_eerd = false;
|
|
|
+ eeprom->use_eewr = false;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (eeprom->type == e1000_eeprom_spi) {
|
|
|
+ /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
|
|
|
+ * 32KB (incremented by powers of 2).
|
|
|
+ */
|
|
|
+ /* Set to default value for initial eeprom read. */
|
|
|
+ eeprom->word_size = 64;
|
|
|
+ ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ eeprom_size =
|
|
|
+ (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
|
|
|
+ /* 256B eeprom size was not supported in earlier hardware, so we
|
|
|
+ * bump eeprom_size up one to ensure that "1" (which maps to 256B)
|
|
|
+ * is never the result used in the shifting logic below. */
|
|
|
+ if (eeprom_size)
|
|
|
+ eeprom_size++;
|
|
|
+
|
|
|
+ eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
|
|
|
+ }
|
|
|
+ return ret_val;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Raises the EEPROM's clock input.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * eecd - EECD's current value
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_raise_ee_clk - Raises the EEPROM's clock input.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @eecd: EECD's current value
|
|
|
+ */
|
|
|
static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
|
|
|
{
|
|
|
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
|
|
|
- * wait <delay> microseconds.
|
|
|
- */
|
|
|
- *eecd = *eecd | E1000_EECD_SK;
|
|
|
- ew32(EECD, *eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(hw->eeprom.delay_usec);
|
|
|
+ /* Raise the clock input to the EEPROM (by setting the SK bit), and then
|
|
|
+ * wait <delay> microseconds.
|
|
|
+ */
|
|
|
+ *eecd = *eecd | E1000_EECD_SK;
|
|
|
+ ew32(EECD, *eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(hw->eeprom.delay_usec);
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Lowers the EEPROM's clock input.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * eecd - EECD's current value
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @eecd: EECD's current value
|
|
|
+ */
|
|
|
static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
|
|
|
{
|
|
|
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
|
|
|
- * wait 50 microseconds.
|
|
|
- */
|
|
|
- *eecd = *eecd & ~E1000_EECD_SK;
|
|
|
- ew32(EECD, *eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(hw->eeprom.delay_usec);
|
|
|
+ /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
|
|
|
+ * wait 50 microseconds.
|
|
|
+ */
|
|
|
+ *eecd = *eecd & ~E1000_EECD_SK;
|
|
|
+ ew32(EECD, *eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(hw->eeprom.delay_usec);
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Shift data bits out to the EEPROM.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * data - data to send to the EEPROM
|
|
|
- * count - number of bits to shift out
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @data: data to send to the EEPROM
|
|
|
+ * @count: number of bits to shift out
|
|
|
+ */
|
|
|
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- u32 eecd;
|
|
|
- u32 mask;
|
|
|
-
|
|
|
- /* We need to shift "count" bits out to the EEPROM. So, value in the
|
|
|
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
|
|
|
- * In order to do this, "data" must be broken down into bits.
|
|
|
- */
|
|
|
- mask = 0x01 << (count - 1);
|
|
|
- eecd = er32(EECD);
|
|
|
- if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
- eecd &= ~E1000_EECD_DO;
|
|
|
- } else if (eeprom->type == e1000_eeprom_spi) {
|
|
|
- eecd |= E1000_EECD_DO;
|
|
|
- }
|
|
|
- do {
|
|
|
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
|
|
|
- * and then raising and then lowering the clock (the SK bit controls
|
|
|
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
|
|
|
- * by setting "DI" to "0" and then raising and then lowering the clock.
|
|
|
- */
|
|
|
- eecd &= ~E1000_EECD_DI;
|
|
|
-
|
|
|
- if (data & mask)
|
|
|
- eecd |= E1000_EECD_DI;
|
|
|
-
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
-
|
|
|
- udelay(eeprom->delay_usec);
|
|
|
-
|
|
|
- e1000_raise_ee_clk(hw, &eecd);
|
|
|
- e1000_lower_ee_clk(hw, &eecd);
|
|
|
-
|
|
|
- mask = mask >> 1;
|
|
|
-
|
|
|
- } while (mask);
|
|
|
-
|
|
|
- /* We leave the "DI" bit set to "0" when we leave this routine. */
|
|
|
- eecd &= ~E1000_EECD_DI;
|
|
|
- ew32(EECD, eecd);
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ u32 eecd;
|
|
|
+ u32 mask;
|
|
|
+
|
|
|
+ /* We need to shift "count" bits out to the EEPROM. So, value in the
|
|
|
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
|
|
|
+ * In order to do this, "data" must be broken down into bits.
|
|
|
+ */
|
|
|
+ mask = 0x01 << (count - 1);
|
|
|
+ eecd = er32(EECD);
|
|
|
+ if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
+ eecd &= ~E1000_EECD_DO;
|
|
|
+ } else if (eeprom->type == e1000_eeprom_spi) {
|
|
|
+ eecd |= E1000_EECD_DO;
|
|
|
+ }
|
|
|
+ do {
|
|
|
+ /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
|
|
|
+ * and then raising and then lowering the clock (the SK bit controls
|
|
|
+ * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
|
|
|
+ * by setting "DI" to "0" and then raising and then lowering the clock.
|
|
|
+ */
|
|
|
+ eecd &= ~E1000_EECD_DI;
|
|
|
+
|
|
|
+ if (data & mask)
|
|
|
+ eecd |= E1000_EECD_DI;
|
|
|
+
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+
|
|
|
+ udelay(eeprom->delay_usec);
|
|
|
+
|
|
|
+ e1000_raise_ee_clk(hw, &eecd);
|
|
|
+ e1000_lower_ee_clk(hw, &eecd);
|
|
|
+
|
|
|
+ mask = mask >> 1;
|
|
|
+
|
|
|
+ } while (mask);
|
|
|
+
|
|
|
+ /* We leave the "DI" bit set to "0" when we leave this routine. */
|
|
|
+ eecd &= ~E1000_EECD_DI;
|
|
|
+ ew32(EECD, eecd);
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Shift data bits in from the EEPROM
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @count: number of bits to shift in
|
|
|
+ */
|
|
|
static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
|
|
|
{
|
|
|
- u32 eecd;
|
|
|
- u32 i;
|
|
|
- u16 data;
|
|
|
-
|
|
|
- /* In order to read a register from the EEPROM, we need to shift 'count'
|
|
|
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
|
|
|
- * input to the EEPROM (setting the SK bit), and then reading the value of
|
|
|
- * the "DO" bit. During this "shifting in" process the "DI" bit should
|
|
|
- * always be clear.
|
|
|
- */
|
|
|
+ u32 eecd;
|
|
|
+ u32 i;
|
|
|
+ u16 data;
|
|
|
+
|
|
|
+ /* In order to read a register from the EEPROM, we need to shift 'count'
|
|
|
+ * bits in from the EEPROM. Bits are "shifted in" by raising the clock
|
|
|
+ * input to the EEPROM (setting the SK bit), and then reading the value of
|
|
|
+ * the "DO" bit. During this "shifting in" process the "DI" bit should
|
|
|
+ * always be clear.
|
|
|
+ */
|
|
|
|
|
|
- eecd = er32(EECD);
|
|
|
+ eecd = er32(EECD);
|
|
|
|
|
|
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
|
|
- data = 0;
|
|
|
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
|
|
+ data = 0;
|
|
|
|
|
|
- for (i = 0; i < count; i++) {
|
|
|
- data = data << 1;
|
|
|
- e1000_raise_ee_clk(hw, &eecd);
|
|
|
+ for (i = 0; i < count; i++) {
|
|
|
+ data = data << 1;
|
|
|
+ e1000_raise_ee_clk(hw, &eecd);
|
|
|
|
|
|
- eecd = er32(EECD);
|
|
|
+ eecd = er32(EECD);
|
|
|
|
|
|
- eecd &= ~(E1000_EECD_DI);
|
|
|
- if (eecd & E1000_EECD_DO)
|
|
|
- data |= 1;
|
|
|
+ eecd &= ~(E1000_EECD_DI);
|
|
|
+ if (eecd & E1000_EECD_DO)
|
|
|
+ data |= 1;
|
|
|
|
|
|
- e1000_lower_ee_clk(hw, &eecd);
|
|
|
- }
|
|
|
+ e1000_lower_ee_clk(hw, &eecd);
|
|
|
+ }
|
|
|
|
|
|
- return data;
|
|
|
+ return data;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Prepares EEPROM for access
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_acquire_eeprom - Prepares EEPROM for access
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
|
|
|
* function should be called before issuing a command to the EEPROM.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- u32 eecd, i=0;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_acquire_eeprom");
|
|
|
-
|
|
|
- eecd = er32(EECD);
|
|
|
-
|
|
|
- /* Request EEPROM Access */
|
|
|
- if (hw->mac_type > e1000_82544) {
|
|
|
- eecd |= E1000_EECD_REQ;
|
|
|
- ew32(EECD, eecd);
|
|
|
- eecd = er32(EECD);
|
|
|
- while ((!(eecd & E1000_EECD_GNT)) &&
|
|
|
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
|
|
|
- i++;
|
|
|
- udelay(5);
|
|
|
- eecd = er32(EECD);
|
|
|
- }
|
|
|
- if (!(eecd & E1000_EECD_GNT)) {
|
|
|
- eecd &= ~E1000_EECD_REQ;
|
|
|
- ew32(EECD, eecd);
|
|
|
- DEBUGOUT("Could not acquire EEPROM grant\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Setup EEPROM for Read/Write */
|
|
|
-
|
|
|
- if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
- /* Clear SK and DI */
|
|
|
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
|
|
|
- ew32(EECD, eecd);
|
|
|
-
|
|
|
- /* Set CS */
|
|
|
- eecd |= E1000_EECD_CS;
|
|
|
- ew32(EECD, eecd);
|
|
|
- } else if (eeprom->type == e1000_eeprom_spi) {
|
|
|
- /* Clear SK and CS */
|
|
|
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
|
- ew32(EECD, eecd);
|
|
|
- udelay(1);
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ u32 eecd, i = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_acquire_eeprom");
|
|
|
+
|
|
|
+ eecd = er32(EECD);
|
|
|
+
|
|
|
+ /* Request EEPROM Access */
|
|
|
+ if (hw->mac_type > e1000_82544) {
|
|
|
+ eecd |= E1000_EECD_REQ;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ eecd = er32(EECD);
|
|
|
+ while ((!(eecd & E1000_EECD_GNT)) &&
|
|
|
+ (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
|
|
|
+ i++;
|
|
|
+ udelay(5);
|
|
|
+ eecd = er32(EECD);
|
|
|
+ }
|
|
|
+ if (!(eecd & E1000_EECD_GNT)) {
|
|
|
+ eecd &= ~E1000_EECD_REQ;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ DEBUGOUT("Could not acquire EEPROM grant\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Setup EEPROM for Read/Write */
|
|
|
+
|
|
|
+ if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
+ /* Clear SK and DI */
|
|
|
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
|
|
|
+ ew32(EECD, eecd);
|
|
|
+
|
|
|
+ /* Set CS */
|
|
|
+ eecd |= E1000_EECD_CS;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ } else if (eeprom->type == e1000_eeprom_spi) {
|
|
|
+ /* Clear SK and CS */
|
|
|
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ udelay(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Returns EEPROM to a "standby" state
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_standby_eeprom - Returns EEPROM to a "standby" state
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
static void e1000_standby_eeprom(struct e1000_hw *hw)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- u32 eecd;
|
|
|
-
|
|
|
- eecd = er32(EECD);
|
|
|
-
|
|
|
- if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(eeprom->delay_usec);
|
|
|
-
|
|
|
- /* Clock high */
|
|
|
- eecd |= E1000_EECD_SK;
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(eeprom->delay_usec);
|
|
|
-
|
|
|
- /* Select EEPROM */
|
|
|
- eecd |= E1000_EECD_CS;
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(eeprom->delay_usec);
|
|
|
-
|
|
|
- /* Clock low */
|
|
|
- eecd &= ~E1000_EECD_SK;
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(eeprom->delay_usec);
|
|
|
- } else if (eeprom->type == e1000_eeprom_spi) {
|
|
|
- /* Toggle CS to flush commands */
|
|
|
- eecd |= E1000_EECD_CS;
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(eeprom->delay_usec);
|
|
|
- eecd &= ~E1000_EECD_CS;
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(eeprom->delay_usec);
|
|
|
- }
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ u32 eecd;
|
|
|
+
|
|
|
+ eecd = er32(EECD);
|
|
|
+
|
|
|
+ if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(eeprom->delay_usec);
|
|
|
+
|
|
|
+ /* Clock high */
|
|
|
+ eecd |= E1000_EECD_SK;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(eeprom->delay_usec);
|
|
|
+
|
|
|
+ /* Select EEPROM */
|
|
|
+ eecd |= E1000_EECD_CS;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(eeprom->delay_usec);
|
|
|
+
|
|
|
+ /* Clock low */
|
|
|
+ eecd &= ~E1000_EECD_SK;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(eeprom->delay_usec);
|
|
|
+ } else if (eeprom->type == e1000_eeprom_spi) {
|
|
|
+ /* Toggle CS to flush commands */
|
|
|
+ eecd |= E1000_EECD_CS;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(eeprom->delay_usec);
|
|
|
+ eecd &= ~E1000_EECD_CS;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(eeprom->delay_usec);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Terminates a command by inverting the EEPROM's chip select pin
|
|
|
+/**
|
|
|
+ * e1000_release_eeprom - drop chip select
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ * Terminates a command by inverting the EEPROM's chip select pin
|
|
|
+ */
|
|
|
static void e1000_release_eeprom(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 eecd;
|
|
|
+ u32 eecd;
|
|
|
|
|
|
- DEBUGFUNC("e1000_release_eeprom");
|
|
|
+ DEBUGFUNC("e1000_release_eeprom");
|
|
|
|
|
|
- eecd = er32(EECD);
|
|
|
+ eecd = er32(EECD);
|
|
|
|
|
|
- if (hw->eeprom.type == e1000_eeprom_spi) {
|
|
|
- eecd |= E1000_EECD_CS; /* Pull CS high */
|
|
|
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
|
|
|
+ if (hw->eeprom.type == e1000_eeprom_spi) {
|
|
|
+ eecd |= E1000_EECD_CS; /* Pull CS high */
|
|
|
+ eecd &= ~E1000_EECD_SK; /* Lower SCK */
|
|
|
|
|
|
- ew32(EECD, eecd);
|
|
|
+ ew32(EECD, eecd);
|
|
|
|
|
|
- udelay(hw->eeprom.delay_usec);
|
|
|
- } else if (hw->eeprom.type == e1000_eeprom_microwire) {
|
|
|
- /* cleanup eeprom */
|
|
|
+ udelay(hw->eeprom.delay_usec);
|
|
|
+ } else if (hw->eeprom.type == e1000_eeprom_microwire) {
|
|
|
+ /* cleanup eeprom */
|
|
|
|
|
|
- /* CS on Microwire is active-high */
|
|
|
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
|
|
|
+ /* CS on Microwire is active-high */
|
|
|
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
|
|
|
|
|
|
- ew32(EECD, eecd);
|
|
|
+ ew32(EECD, eecd);
|
|
|
|
|
|
- /* Rising edge of clock */
|
|
|
- eecd |= E1000_EECD_SK;
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(hw->eeprom.delay_usec);
|
|
|
+ /* Rising edge of clock */
|
|
|
+ eecd |= E1000_EECD_SK;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(hw->eeprom.delay_usec);
|
|
|
|
|
|
- /* Falling edge of clock */
|
|
|
- eecd &= ~E1000_EECD_SK;
|
|
|
- ew32(EECD, eecd);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- udelay(hw->eeprom.delay_usec);
|
|
|
- }
|
|
|
+ /* Falling edge of clock */
|
|
|
+ eecd &= ~E1000_EECD_SK;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ udelay(hw->eeprom.delay_usec);
|
|
|
+ }
|
|
|
|
|
|
- /* Stop requesting EEPROM access */
|
|
|
- if (hw->mac_type > e1000_82544) {
|
|
|
- eecd &= ~E1000_EECD_REQ;
|
|
|
- ew32(EECD, eecd);
|
|
|
- }
|
|
|
+ /* Stop requesting EEPROM access */
|
|
|
+ if (hw->mac_type > e1000_82544) {
|
|
|
+ eecd &= ~E1000_EECD_REQ;
|
|
|
+ ew32(EECD, eecd);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Reads a 16 bit word from the EEPROM.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u16 retry_count = 0;
|
|
|
- u8 spi_stat_reg;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_spi_eeprom_ready");
|
|
|
-
|
|
|
- /* Read "Status Register" repeatedly until the LSB is cleared. The
|
|
|
- * EEPROM will signal that the command has been completed by clearing
|
|
|
- * bit 0 of the internal status register. If it's not cleared within
|
|
|
- * 5 milliseconds, then error out.
|
|
|
- */
|
|
|
- retry_count = 0;
|
|
|
- do {
|
|
|
- e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
|
|
|
- hw->eeprom.opcode_bits);
|
|
|
- spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
|
|
|
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
|
|
|
- break;
|
|
|
-
|
|
|
- udelay(5);
|
|
|
- retry_count += 5;
|
|
|
-
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
|
|
|
-
|
|
|
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
|
|
|
- * only 0-5mSec on 5V devices)
|
|
|
- */
|
|
|
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
|
|
|
- DEBUGOUT("SPI EEPROM Status error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u16 retry_count = 0;
|
|
|
+ u8 spi_stat_reg;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_spi_eeprom_ready");
|
|
|
+
|
|
|
+ /* Read "Status Register" repeatedly until the LSB is cleared. The
|
|
|
+ * EEPROM will signal that the command has been completed by clearing
|
|
|
+ * bit 0 of the internal status register. If it's not cleared within
|
|
|
+ * 5 milliseconds, then error out.
|
|
|
+ */
|
|
|
+ retry_count = 0;
|
|
|
+ do {
|
|
|
+ e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
|
|
|
+ hw->eeprom.opcode_bits);
|
|
|
+ spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
|
|
|
+ if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
|
|
|
+ break;
|
|
|
+
|
|
|
+ udelay(5);
|
|
|
+ retry_count += 5;
|
|
|
+
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
+ } while (retry_count < EEPROM_MAX_RETRY_SPI);
|
|
|
+
|
|
|
+ /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
|
|
|
+ * only 0-5mSec on 5V devices)
|
|
|
+ */
|
|
|
+ if (retry_count >= EEPROM_MAX_RETRY_SPI) {
|
|
|
+ DEBUGOUT("SPI EEPROM Status error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Reads a 16 bit word from the EEPROM.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * offset - offset of word in the EEPROM to read
|
|
|
- * data - word read from the EEPROM
|
|
|
- * words - number of words to read
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @offset: offset of word in the EEPROM to read
|
|
|
+ * @data: word read from the EEPROM
|
|
|
+ * @words: number of words to read
|
|
|
+ */
|
|
|
s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
|
{
|
|
|
- s32 ret;
|
|
|
- spin_lock(&e1000_eeprom_lock);
|
|
|
- ret = e1000_do_read_eeprom(hw, offset, words, data);
|
|
|
- spin_unlock(&e1000_eeprom_lock);
|
|
|
- return ret;
|
|
|
+ s32 ret;
|
|
|
+ spin_lock(&e1000_eeprom_lock);
|
|
|
+ ret = e1000_do_read_eeprom(hw, offset, words, data);
|
|
|
+ spin_unlock(&e1000_eeprom_lock);
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
|
+static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
+ u16 *data)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- u32 i = 0;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_read_eeprom");
|
|
|
-
|
|
|
- /* If eeprom is not yet detected, do so now */
|
|
|
- if (eeprom->word_size == 0)
|
|
|
- e1000_init_eeprom_params(hw);
|
|
|
-
|
|
|
- /* A check for invalid values: offset too large, too many words, and not
|
|
|
- * enough words.
|
|
|
- */
|
|
|
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
|
|
|
- (words == 0)) {
|
|
|
- DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
-
|
|
|
- /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
|
|
|
- * directly. In this case, we need to acquire the EEPROM so that
|
|
|
- * FW or other port software does not interrupt.
|
|
|
- */
|
|
|
- if (!hw->eeprom.use_eerd) {
|
|
|
- /* Prepare the EEPROM for bit-bang reading */
|
|
|
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
-
|
|
|
- /* Eerd register EEPROM access requires no eeprom aquire/release */
|
|
|
- if (eeprom->use_eerd)
|
|
|
- return e1000_read_eeprom_eerd(hw, offset, words, data);
|
|
|
-
|
|
|
- /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
|
|
|
- * acquired the EEPROM at this point, so any returns should relase it */
|
|
|
- if (eeprom->type == e1000_eeprom_spi) {
|
|
|
- u16 word_in;
|
|
|
- u8 read_opcode = EEPROM_READ_OPCODE_SPI;
|
|
|
-
|
|
|
- if (e1000_spi_eeprom_ready(hw)) {
|
|
|
- e1000_release_eeprom(hw);
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
-
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
-
|
|
|
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
|
|
|
- if ((eeprom->address_bits == 8) && (offset >= 128))
|
|
|
- read_opcode |= EEPROM_A8_OPCODE_SPI;
|
|
|
-
|
|
|
- /* Send the READ command (opcode + addr) */
|
|
|
- e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
|
|
|
- e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits);
|
|
|
-
|
|
|
- /* Read the data. The address of the eeprom internally increments with
|
|
|
- * each byte (spi) being read, saving on the overhead of eeprom setup
|
|
|
- * and tear-down. The address counter will roll over if reading beyond
|
|
|
- * the size of the eeprom, thus allowing the entire memory to be read
|
|
|
- * starting from any offset. */
|
|
|
- for (i = 0; i < words; i++) {
|
|
|
- word_in = e1000_shift_in_ee_bits(hw, 16);
|
|
|
- data[i] = (word_in >> 8) | (word_in << 8);
|
|
|
- }
|
|
|
- } else if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
- for (i = 0; i < words; i++) {
|
|
|
- /* Send the READ command (opcode + addr) */
|
|
|
- e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
|
|
|
- eeprom->opcode_bits);
|
|
|
- e1000_shift_out_ee_bits(hw, (u16)(offset + i),
|
|
|
- eeprom->address_bits);
|
|
|
-
|
|
|
- /* Read the data. For microwire, each word requires the overhead
|
|
|
- * of eeprom setup and tear-down. */
|
|
|
- data[i] = e1000_shift_in_ee_bits(hw, 16);
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* End this read operation */
|
|
|
- e1000_release_eeprom(hw);
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ u32 i = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_read_eeprom");
|
|
|
+
|
|
|
+ /* If eeprom is not yet detected, do so now */
|
|
|
+ if (eeprom->word_size == 0)
|
|
|
+ e1000_init_eeprom_params(hw);
|
|
|
+
|
|
|
+ /* A check for invalid values: offset too large, too many words, and not
|
|
|
+ * enough words.
|
|
|
+ */
|
|
|
+ if ((offset >= eeprom->word_size)
|
|
|
+ || (words > eeprom->word_size - offset) || (words == 0)) {
|
|
|
+ DEBUGOUT2
|
|
|
+ ("\"words\" parameter out of bounds. Words = %d, size = %d\n",
|
|
|
+ offset, eeprom->word_size);
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
|
|
|
+ * directly. In this case, we need to acquire the EEPROM so that
|
|
|
+ * FW or other port software does not interrupt.
|
|
|
+ */
|
|
|
+ if (!hw->eeprom.use_eerd) {
|
|
|
+ /* Prepare the EEPROM for bit-bang reading */
|
|
|
+ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Eerd register EEPROM access requires no eeprom aquire/release */
|
|
|
+ if (eeprom->use_eerd)
|
|
|
+ return e1000_read_eeprom_eerd(hw, offset, words, data);
|
|
|
+
|
|
|
+ /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
|
|
|
+ * acquired the EEPROM at this point, so any returns should release it */
|
|
|
+ if (eeprom->type == e1000_eeprom_spi) {
|
|
|
+ u16 word_in;
|
|
|
+ u8 read_opcode = EEPROM_READ_OPCODE_SPI;
|
|
|
+
|
|
|
+ if (e1000_spi_eeprom_ready(hw)) {
|
|
|
+ e1000_release_eeprom(hw);
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
+
|
|
|
+ /* Some SPI eeproms use the 8th address bit embedded in the opcode */
|
|
|
+ if ((eeprom->address_bits == 8) && (offset >= 128))
|
|
|
+ read_opcode |= EEPROM_A8_OPCODE_SPI;
|
|
|
+
|
|
|
+ /* Send the READ command (opcode + addr) */
|
|
|
+ e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
|
|
|
+ e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
|
|
|
+ eeprom->address_bits);
|
|
|
+
|
|
|
+ /* Read the data. The address of the eeprom internally increments with
|
|
|
+ * each byte (spi) being read, saving on the overhead of eeprom setup
|
|
|
+ * and tear-down. The address counter will roll over if reading beyond
|
|
|
+ * the size of the eeprom, thus allowing the entire memory to be read
|
|
|
+ * starting from any offset. */
|
|
|
+ for (i = 0; i < words; i++) {
|
|
|
+ word_in = e1000_shift_in_ee_bits(hw, 16);
|
|
|
+ data[i] = (word_in >> 8) | (word_in << 8);
|
|
|
+ }
|
|
|
+ } else if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
+ for (i = 0; i < words; i++) {
|
|
|
+ /* Send the READ command (opcode + addr) */
|
|
|
+ e1000_shift_out_ee_bits(hw,
|
|
|
+ EEPROM_READ_OPCODE_MICROWIRE,
|
|
|
+ eeprom->opcode_bits);
|
|
|
+ e1000_shift_out_ee_bits(hw, (u16) (offset + i),
|
|
|
+ eeprom->address_bits);
|
|
|
+
|
|
|
+ /* Read the data. For microwire, each word requires the overhead
|
|
|
+ * of eeprom setup and tear-down. */
|
|
|
+ data[i] = e1000_shift_in_ee_bits(hw, 16);
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /* End this read operation */
|
|
|
+ e1000_release_eeprom(hw);
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
* Reads a 16 bit word from the EEPROM using the EERD register.
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
* offset - offset of word in the EEPROM to read
|
|
|
* data - word read from the EEPROM
|
|
|
* words - number of words to read
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
u16 *data)
|
|
|
{
|
|
|
- u32 i, eerd = 0;
|
|
|
- s32 error = 0;
|
|
|
+ u32 i, eerd = 0;
|
|
|
+ s32 error = 0;
|
|
|
|
|
|
- for (i = 0; i < words; i++) {
|
|
|
- eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
|
|
|
- E1000_EEPROM_RW_REG_START;
|
|
|
+ for (i = 0; i < words; i++) {
|
|
|
+ eerd = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) +
|
|
|
+ E1000_EEPROM_RW_REG_START;
|
|
|
|
|
|
- ew32(EERD, eerd);
|
|
|
- error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
|
|
|
+ ew32(EERD, eerd);
|
|
|
+ error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
|
|
|
|
|
|
- if (error) {
|
|
|
- break;
|
|
|
- }
|
|
|
- data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
|
|
|
+ if (error) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
|
|
|
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
- return error;
|
|
|
+ return error;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
* Writes a 16 bit word from the EEPROM using the EEWR register.
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
* offset - offset of word in the EEPROM to read
|
|
|
* data - word read from the EEPROM
|
|
|
* words - number of words to read
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
u16 *data)
|
|
|
{
|
|
|
- u32 register_value = 0;
|
|
|
- u32 i = 0;
|
|
|
- s32 error = 0;
|
|
|
-
|
|
|
+ u32 register_value = 0;
|
|
|
+ u32 i = 0;
|
|
|
+ s32 error = 0;
|
|
|
|
|
|
- for (i = 0; i < words; i++) {
|
|
|
- register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
|
|
|
- ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
|
|
|
- E1000_EEPROM_RW_REG_START;
|
|
|
+ for (i = 0; i < words; i++) {
|
|
|
+ register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
|
|
|
+ ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) |
|
|
|
+ E1000_EEPROM_RW_REG_START;
|
|
|
|
|
|
- error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
|
|
|
- if (error) {
|
|
|
- break;
|
|
|
- }
|
|
|
+ error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
|
|
|
+ if (error) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
|
|
|
- ew32(EEWR, register_value);
|
|
|
+ ew32(EEWR, register_value);
|
|
|
|
|
|
- error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
|
|
|
+ error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
|
|
|
|
|
|
- if (error) {
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
+ if (error) {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- return error;
|
|
|
+ return error;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
* Polls the status bit (bit 1) of the EERD to determine when the read is done.
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
|
|
|
{
|
|
|
- u32 attempts = 100000;
|
|
|
- u32 i, reg = 0;
|
|
|
- s32 done = E1000_ERR_EEPROM;
|
|
|
-
|
|
|
- for (i = 0; i < attempts; i++) {
|
|
|
- if (eerd == E1000_EEPROM_POLL_READ)
|
|
|
- reg = er32(EERD);
|
|
|
- else
|
|
|
- reg = er32(EEWR);
|
|
|
-
|
|
|
- if (reg & E1000_EEPROM_RW_REG_DONE) {
|
|
|
- done = E1000_SUCCESS;
|
|
|
- break;
|
|
|
- }
|
|
|
- udelay(5);
|
|
|
- }
|
|
|
-
|
|
|
- return done;
|
|
|
+ u32 attempts = 100000;
|
|
|
+ u32 i, reg = 0;
|
|
|
+ s32 done = E1000_ERR_EEPROM;
|
|
|
+
|
|
|
+ for (i = 0; i < attempts; i++) {
|
|
|
+ if (eerd == E1000_EEPROM_POLL_READ)
|
|
|
+ reg = er32(EERD);
|
|
|
+ else
|
|
|
+ reg = er32(EEWR);
|
|
|
+
|
|
|
+ if (reg & E1000_EEPROM_RW_REG_DONE) {
|
|
|
+ done = E1000_SUCCESS;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ udelay(5);
|
|
|
+ }
|
|
|
+
|
|
|
+ return done;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Verifies that the EEPROM has a valid checksum
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
|
|
|
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
|
|
|
* valid.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u16 checksum = 0;
|
|
|
- u16 i, eeprom_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_validate_eeprom_checksum");
|
|
|
-
|
|
|
- for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
|
|
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
|
|
- DEBUGOUT("EEPROM Read Error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
- checksum += eeprom_data;
|
|
|
- }
|
|
|
-
|
|
|
- if (checksum == (u16)EEPROM_SUM)
|
|
|
- return E1000_SUCCESS;
|
|
|
- else {
|
|
|
- DEBUGOUT("EEPROM Checksum Invalid\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
+ u16 checksum = 0;
|
|
|
+ u16 i, eeprom_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_validate_eeprom_checksum");
|
|
|
+
|
|
|
+ for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
|
|
+ if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
|
|
+ DEBUGOUT("EEPROM Read Error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+ checksum += eeprom_data;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (checksum == (u16) EEPROM_SUM)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ else {
|
|
|
+ DEBUGOUT("EEPROM Checksum Invalid\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Calculates the EEPROM checksum and writes it to the EEPROM
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
* Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
|
|
|
* Writes the difference to word offset 63 of the EEPROM.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u16 checksum = 0;
|
|
|
- u16 i, eeprom_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_update_eeprom_checksum");
|
|
|
-
|
|
|
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
|
|
|
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
|
|
- DEBUGOUT("EEPROM Read Error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
- checksum += eeprom_data;
|
|
|
- }
|
|
|
- checksum = (u16)EEPROM_SUM - checksum;
|
|
|
- if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
|
|
|
- DEBUGOUT("EEPROM Write Error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u16 checksum = 0;
|
|
|
+ u16 i, eeprom_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_update_eeprom_checksum");
|
|
|
+
|
|
|
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
|
|
|
+ if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
|
|
+ DEBUGOUT("EEPROM Read Error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+ checksum += eeprom_data;
|
|
|
+ }
|
|
|
+ checksum = (u16) EEPROM_SUM - checksum;
|
|
|
+ if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
|
|
|
+ DEBUGOUT("EEPROM Write Error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Parent function for writing words to the different EEPROM types.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * offset - offset within the EEPROM to be written to
|
|
|
- * words - number of words to write
|
|
|
- * data - 16 bit word to be written to the EEPROM
|
|
|
+/**
|
|
|
+ * e1000_write_eeprom - write words to the different EEPROM types.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @offset: offset within the EEPROM to be written to
|
|
|
+ * @words: number of words to write
|
|
|
+ * @data: 16 bit word to be written to the EEPROM
|
|
|
*
|
|
|
* If e1000_update_eeprom_checksum is not called after this function, the
|
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
|
{
|
|
|
- s32 ret;
|
|
|
- spin_lock(&e1000_eeprom_lock);
|
|
|
- ret = e1000_do_write_eeprom(hw, offset, words, data);
|
|
|
- spin_unlock(&e1000_eeprom_lock);
|
|
|
- return ret;
|
|
|
+ s32 ret;
|
|
|
+ spin_lock(&e1000_eeprom_lock);
|
|
|
+ ret = e1000_do_write_eeprom(hw, offset, words, data);
|
|
|
+ spin_unlock(&e1000_eeprom_lock);
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
-
|
|
|
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
|
|
|
+static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
+ u16 *data)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- s32 status = 0;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_write_eeprom");
|
|
|
-
|
|
|
- /* If eeprom is not yet detected, do so now */
|
|
|
- if (eeprom->word_size == 0)
|
|
|
- e1000_init_eeprom_params(hw);
|
|
|
-
|
|
|
- /* A check for invalid values: offset too large, too many words, and not
|
|
|
- * enough words.
|
|
|
- */
|
|
|
- if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
|
|
|
- (words == 0)) {
|
|
|
- DEBUGOUT("\"words\" parameter out of bounds\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
-
|
|
|
- if (eeprom->use_eewr)
|
|
|
- return e1000_write_eeprom_eewr(hw, offset, words, data);
|
|
|
-
|
|
|
- /* Prepare the EEPROM for writing */
|
|
|
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
-
|
|
|
- if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
- status = e1000_write_eeprom_microwire(hw, offset, words, data);
|
|
|
- } else {
|
|
|
- status = e1000_write_eeprom_spi(hw, offset, words, data);
|
|
|
- msleep(10);
|
|
|
- }
|
|
|
-
|
|
|
- /* Done with writing */
|
|
|
- e1000_release_eeprom(hw);
|
|
|
-
|
|
|
- return status;
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ s32 status = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_write_eeprom");
|
|
|
+
|
|
|
+ /* If eeprom is not yet detected, do so now */
|
|
|
+ if (eeprom->word_size == 0)
|
|
|
+ e1000_init_eeprom_params(hw);
|
|
|
+
|
|
|
+ /* A check for invalid values: offset too large, too many words, and not
|
|
|
+ * enough words.
|
|
|
+ */
|
|
|
+ if ((offset >= eeprom->word_size)
|
|
|
+ || (words > eeprom->word_size - offset) || (words == 0)) {
|
|
|
+ DEBUGOUT("\"words\" parameter out of bounds\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (eeprom->use_eewr)
|
|
|
+ return e1000_write_eeprom_eewr(hw, offset, words, data);
|
|
|
+
|
|
|
+ /* Prepare the EEPROM for writing */
|
|
|
+ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+
|
|
|
+ if (eeprom->type == e1000_eeprom_microwire) {
|
|
|
+ status = e1000_write_eeprom_microwire(hw, offset, words, data);
|
|
|
+ } else {
|
|
|
+ status = e1000_write_eeprom_spi(hw, offset, words, data);
|
|
|
+ msleep(10);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Done with writing */
|
|
|
+ e1000_release_eeprom(hw);
|
|
|
+
|
|
|
+ return status;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Writes a 16 bit word to a given offset in an SPI EEPROM.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * offset - offset within the EEPROM to be written to
|
|
|
- * words - number of words to write
|
|
|
- * data - pointer to array of 8 bit words to be written to the EEPROM
|
|
|
- *
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @offset: offset within the EEPROM to be written to
|
|
|
+ * @words: number of words to write
|
|
|
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
|
|
|
+ */
|
|
|
static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
|
|
|
u16 *data)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- u16 widx = 0;
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ u16 widx = 0;
|
|
|
|
|
|
- DEBUGFUNC("e1000_write_eeprom_spi");
|
|
|
+ DEBUGFUNC("e1000_write_eeprom_spi");
|
|
|
|
|
|
- while (widx < words) {
|
|
|
- u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
|
|
|
+ while (widx < words) {
|
|
|
+ u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
|
|
|
|
|
|
- if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
|
|
|
+ if (e1000_spi_eeprom_ready(hw))
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
|
|
|
- /* Send the WRITE ENABLE command (8 bit opcode ) */
|
|
|
- e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
|
|
|
- eeprom->opcode_bits);
|
|
|
+ /* Send the WRITE ENABLE command (8 bit opcode ) */
|
|
|
+ e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
|
|
|
+ eeprom->opcode_bits);
|
|
|
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
|
|
|
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
|
|
|
- if ((eeprom->address_bits == 8) && (offset >= 128))
|
|
|
- write_opcode |= EEPROM_A8_OPCODE_SPI;
|
|
|
+ /* Some SPI eeproms use the 8th address bit embedded in the opcode */
|
|
|
+ if ((eeprom->address_bits == 8) && (offset >= 128))
|
|
|
+ write_opcode |= EEPROM_A8_OPCODE_SPI;
|
|
|
|
|
|
- /* Send the Write command (8-bit opcode + addr) */
|
|
|
- e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
|
|
|
+ /* Send the Write command (8-bit opcode + addr) */
|
|
|
+ e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
|
|
|
|
|
|
- e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2),
|
|
|
- eeprom->address_bits);
|
|
|
+ e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
|
|
|
+ eeprom->address_bits);
|
|
|
|
|
|
- /* Send the data */
|
|
|
+ /* Send the data */
|
|
|
|
|
|
- /* Loop to allow for up to whole page write (32 bytes) of eeprom */
|
|
|
- while (widx < words) {
|
|
|
- u16 word_out = data[widx];
|
|
|
- word_out = (word_out >> 8) | (word_out << 8);
|
|
|
- e1000_shift_out_ee_bits(hw, word_out, 16);
|
|
|
- widx++;
|
|
|
+ /* Loop to allow for up to whole page write (32 bytes) of eeprom */
|
|
|
+ while (widx < words) {
|
|
|
+ u16 word_out = data[widx];
|
|
|
+ word_out = (word_out >> 8) | (word_out << 8);
|
|
|
+ e1000_shift_out_ee_bits(hw, word_out, 16);
|
|
|
+ widx++;
|
|
|
|
|
|
- /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
|
|
|
- * operation, while the smaller eeproms are capable of an 8-byte
|
|
|
- * PAGE WRITE operation. Break the inner loop to pass new address
|
|
|
- */
|
|
|
- if ((((offset + widx)*2) % eeprom->page_size) == 0) {
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
+ /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
|
|
|
+ * operation, while the smaller eeproms are capable of an 8-byte
|
|
|
+ * PAGE WRITE operation. Break the inner loop to pass new address
|
|
|
+ */
|
|
|
+ if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- return E1000_SUCCESS;
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Writes a 16 bit word to a given offset in a Microwire EEPROM.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * offset - offset within the EEPROM to be written to
|
|
|
- * words - number of words to write
|
|
|
- * data - pointer to array of 16 bit words to be written to the EEPROM
|
|
|
- *
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @offset: offset within the EEPROM to be written to
|
|
|
+ * @words: number of words to write
|
|
|
+ * @data: pointer to array of 8 bit words to be written to the EEPROM
|
|
|
+ */
|
|
|
static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
|
|
|
u16 words, u16 *data)
|
|
|
{
|
|
|
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
- u32 eecd;
|
|
|
- u16 words_written = 0;
|
|
|
- u16 i = 0;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_write_eeprom_microwire");
|
|
|
-
|
|
|
- /* Send the write enable command to the EEPROM (3-bit opcode plus
|
|
|
- * 6/8-bit dummy address beginning with 11). It's less work to include
|
|
|
- * the 11 of the dummy address as part of the opcode than it is to shift
|
|
|
- * it over the correct number of bits for the address. This puts the
|
|
|
- * EEPROM into write/erase mode.
|
|
|
- */
|
|
|
- e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
|
|
|
- (u16)(eeprom->opcode_bits + 2));
|
|
|
-
|
|
|
- e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
|
|
|
-
|
|
|
- /* Prepare the EEPROM */
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
-
|
|
|
- while (words_written < words) {
|
|
|
- /* Send the Write command (3-bit opcode + addr) */
|
|
|
- e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
|
|
|
- eeprom->opcode_bits);
|
|
|
-
|
|
|
- e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
|
|
|
- eeprom->address_bits);
|
|
|
-
|
|
|
- /* Send the data */
|
|
|
- e1000_shift_out_ee_bits(hw, data[words_written], 16);
|
|
|
-
|
|
|
- /* Toggle the CS line. This in effect tells the EEPROM to execute
|
|
|
- * the previous command.
|
|
|
- */
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
-
|
|
|
- /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
|
|
|
- * signal that the command has been completed by raising the DO signal.
|
|
|
- * If DO does not go high in 10 milliseconds, then error out.
|
|
|
- */
|
|
|
- for (i = 0; i < 200; i++) {
|
|
|
- eecd = er32(EECD);
|
|
|
- if (eecd & E1000_EECD_DO) break;
|
|
|
- udelay(50);
|
|
|
- }
|
|
|
- if (i == 200) {
|
|
|
- DEBUGOUT("EEPROM Write did not complete\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
-
|
|
|
- /* Recover from write */
|
|
|
- e1000_standby_eeprom(hw);
|
|
|
-
|
|
|
- words_written++;
|
|
|
- }
|
|
|
-
|
|
|
- /* Send the write disable command to the EEPROM (3-bit opcode plus
|
|
|
- * 6/8-bit dummy address beginning with 10). It's less work to include
|
|
|
- * the 10 of the dummy address as part of the opcode than it is to shift
|
|
|
- * it over the correct number of bits for the address. This takes the
|
|
|
- * EEPROM out of write/erase mode.
|
|
|
- */
|
|
|
- e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
|
|
|
- (u16)(eeprom->opcode_bits + 2));
|
|
|
-
|
|
|
- e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
|
+ u32 eecd;
|
|
|
+ u16 words_written = 0;
|
|
|
+ u16 i = 0;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_write_eeprom_microwire");
|
|
|
+
|
|
|
+ /* Send the write enable command to the EEPROM (3-bit opcode plus
|
|
|
+ * 6/8-bit dummy address beginning with 11). It's less work to include
|
|
|
+ * the 11 of the dummy address as part of the opcode than it is to shift
|
|
|
+ * it over the correct number of bits for the address. This puts the
|
|
|
+ * EEPROM into write/erase mode.
|
|
|
+ */
|
|
|
+ e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
|
|
|
+ (u16) (eeprom->opcode_bits + 2));
|
|
|
+
|
|
|
+ e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
|
|
|
+
|
|
|
+ /* Prepare the EEPROM */
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
+
|
|
|
+ while (words_written < words) {
|
|
|
+ /* Send the Write command (3-bit opcode + addr) */
|
|
|
+ e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
|
|
|
+ eeprom->opcode_bits);
|
|
|
+
|
|
|
+ e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
|
|
|
+ eeprom->address_bits);
|
|
|
+
|
|
|
+ /* Send the data */
|
|
|
+ e1000_shift_out_ee_bits(hw, data[words_written], 16);
|
|
|
+
|
|
|
+ /* Toggle the CS line. This in effect tells the EEPROM to execute
|
|
|
+ * the previous command.
|
|
|
+ */
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
+
|
|
|
+ /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
|
|
|
+ * signal that the command has been completed by raising the DO signal.
|
|
|
+ * If DO does not go high in 10 milliseconds, then error out.
|
|
|
+ */
|
|
|
+ for (i = 0; i < 200; i++) {
|
|
|
+ eecd = er32(EECD);
|
|
|
+ if (eecd & E1000_EECD_DO)
|
|
|
+ break;
|
|
|
+ udelay(50);
|
|
|
+ }
|
|
|
+ if (i == 200) {
|
|
|
+ DEBUGOUT("EEPROM Write did not complete\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Recover from write */
|
|
|
+ e1000_standby_eeprom(hw);
|
|
|
+
|
|
|
+ words_written++;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Send the write disable command to the EEPROM (3-bit opcode plus
|
|
|
+ * 6/8-bit dummy address beginning with 10). It's less work to include
|
|
|
+ * the 10 of the dummy address as part of the opcode than it is to shift
|
|
|
+ * it over the correct number of bits for the address. This takes the
|
|
|
+ * EEPROM out of write/erase mode.
|
|
|
+ */
|
|
|
+ e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
|
|
|
+ (u16) (eeprom->opcode_bits + 2));
|
|
|
+
|
|
|
+ e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
+ * e1000_read_mac_addr - read the adapters MAC from eeprom
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
|
|
|
* second function of dual function devices
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
s32 e1000_read_mac_addr(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u16 offset;
|
|
|
- u16 eeprom_data, i;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_read_mac_addr");
|
|
|
-
|
|
|
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
|
|
|
- offset = i >> 1;
|
|
|
- if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
|
|
|
- DEBUGOUT("EEPROM Read Error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
- hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
|
|
|
- hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8);
|
|
|
- }
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- default:
|
|
|
- break;
|
|
|
- case e1000_82546:
|
|
|
- case e1000_82546_rev_3:
|
|
|
- if (er32(STATUS) & E1000_STATUS_FUNC_1)
|
|
|
- hw->perm_mac_addr[5] ^= 0x01;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- for (i = 0; i < NODE_ADDRESS_SIZE; i++)
|
|
|
- hw->mac_addr[i] = hw->perm_mac_addr[i];
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u16 offset;
|
|
|
+ u16 eeprom_data, i;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_read_mac_addr");
|
|
|
+
|
|
|
+ for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
|
|
|
+ offset = i >> 1;
|
|
|
+ if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
|
|
|
+ DEBUGOUT("EEPROM Read Error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+ hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
|
|
|
+ hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
|
|
|
+ }
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ default:
|
|
|
+ break;
|
|
|
+ case e1000_82546:
|
|
|
+ case e1000_82546_rev_3:
|
|
|
+ if (er32(STATUS) & E1000_STATUS_FUNC_1)
|
|
|
+ hw->perm_mac_addr[5] ^= 0x01;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < NODE_ADDRESS_SIZE; i++)
|
|
|
+ hw->mac_addr[i] = hw->perm_mac_addr[i];
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Initializes receive address filters.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_init_rx_addrs - Initializes receive address filters.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
* Places the MAC address in receive address register 0 and clears the rest
|
|
|
- * of the receive addresss registers. Clears the multicast table. Assumes
|
|
|
+ * of the receive address registers. Clears the multicast table. Assumes
|
|
|
* the receiver is in reset when the routine is called.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static void e1000_init_rx_addrs(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 i;
|
|
|
- u32 rar_num;
|
|
|
+ u32 i;
|
|
|
+ u32 rar_num;
|
|
|
|
|
|
- DEBUGFUNC("e1000_init_rx_addrs");
|
|
|
+ DEBUGFUNC("e1000_init_rx_addrs");
|
|
|
|
|
|
- /* Setup the receive address. */
|
|
|
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
|
|
|
+ /* Setup the receive address. */
|
|
|
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
|
|
|
|
|
|
- e1000_rar_set(hw, hw->mac_addr, 0);
|
|
|
+ e1000_rar_set(hw, hw->mac_addr, 0);
|
|
|
|
|
|
- rar_num = E1000_RAR_ENTRIES;
|
|
|
+ rar_num = E1000_RAR_ENTRIES;
|
|
|
|
|
|
- /* Zero out the other 15 receive addresses. */
|
|
|
- DEBUGOUT("Clearing RAR[1-15]\n");
|
|
|
- for (i = 1; i < rar_num; i++) {
|
|
|
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- }
|
|
|
+ /* Zero out the other 15 receive addresses. */
|
|
|
+ DEBUGOUT("Clearing RAR[1-15]\n");
|
|
|
+ for (i = 1; i < rar_num; i++) {
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Hashes an address to determine its location in the multicast table
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * mc_addr - the multicast address to hash
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @mc_addr: the multicast address to hash
|
|
|
+ */
|
|
|
u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
|
|
|
{
|
|
|
- u32 hash_value = 0;
|
|
|
-
|
|
|
- /* The portion of the address that is used for the hash table is
|
|
|
- * determined by the mc_filter_type setting.
|
|
|
- */
|
|
|
- switch (hw->mc_filter_type) {
|
|
|
- /* [0] [1] [2] [3] [4] [5]
|
|
|
- * 01 AA 00 12 34 56
|
|
|
- * LSB MSB
|
|
|
- */
|
|
|
- case 0:
|
|
|
- /* [47:36] i.e. 0x563 for above example address */
|
|
|
- hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
|
|
|
- break;
|
|
|
- case 1:
|
|
|
- /* [46:35] i.e. 0xAC6 for above example address */
|
|
|
- hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- /* [45:34] i.e. 0x5D8 for above example address */
|
|
|
- hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
|
|
|
- break;
|
|
|
- case 3:
|
|
|
- /* [43:32] i.e. 0x634 for above example address */
|
|
|
- hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- hash_value &= 0xFFF;
|
|
|
- return hash_value;
|
|
|
+ u32 hash_value = 0;
|
|
|
+
|
|
|
+ /* The portion of the address that is used for the hash table is
|
|
|
+ * determined by the mc_filter_type setting.
|
|
|
+ */
|
|
|
+ switch (hw->mc_filter_type) {
|
|
|
+ /* [0] [1] [2] [3] [4] [5]
|
|
|
+ * 01 AA 00 12 34 56
|
|
|
+ * LSB MSB
|
|
|
+ */
|
|
|
+ case 0:
|
|
|
+ /* [47:36] i.e. 0x563 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
|
|
|
+ break;
|
|
|
+ case 1:
|
|
|
+ /* [46:35] i.e. 0xAC6 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
|
|
|
+ break;
|
|
|
+ case 2:
|
|
|
+ /* [45:34] i.e. 0x5D8 for above example address */
|
|
|
+ hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
|
|
|
+ break;
|
|
|
+ case 3:
|
|
|
+ /* [43:32] i.e. 0x634 for above example address */
|
|
|
+ hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ hash_value &= 0xFFF;
|
|
|
+ return hash_value;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Puts an ethernet address into a receive address register.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * addr - Address to put into receive address register
|
|
|
- * index - Receive address register to write
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_rar_set - Puts an ethernet address into a receive address register.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @addr: Address to put into receive address register
|
|
|
+ * @index: Receive address register to write
|
|
|
+ */
|
|
|
void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
|
|
|
{
|
|
|
- u32 rar_low, rar_high;
|
|
|
-
|
|
|
- /* HW expects these in little endian so we reverse the byte order
|
|
|
- * from network order (big endian) to little endian
|
|
|
- */
|
|
|
- rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
|
|
|
- ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
|
|
|
- rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
|
|
|
-
|
|
|
- /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
|
|
|
- * unit hang.
|
|
|
- *
|
|
|
- * Description:
|
|
|
- * If there are any Rx frames queued up or otherwise present in the HW
|
|
|
- * before RSS is enabled, and then we enable RSS, the HW Rx unit will
|
|
|
- * hang. To work around this issue, we have to disable receives and
|
|
|
- * flush out all Rx frames before we enable RSS. To do so, we modify we
|
|
|
- * redirect all Rx traffic to manageability and then reset the HW.
|
|
|
- * This flushes away Rx frames, and (since the redirections to
|
|
|
- * manageability persists across resets) keeps new ones from coming in
|
|
|
- * while we work. Then, we clear the Address Valid AV bit for all MAC
|
|
|
- * addresses and undo the re-direction to manageability.
|
|
|
- * Now, frames are coming in again, but the MAC won't accept them, so
|
|
|
- * far so good. We now proceed to initialize RSS (if necessary) and
|
|
|
- * configure the Rx unit. Last, we re-enable the AV bits and continue
|
|
|
- * on our merry way.
|
|
|
- */
|
|
|
- switch (hw->mac_type) {
|
|
|
- default:
|
|
|
- /* Indicate to hardware the Address is Valid. */
|
|
|
- rar_high |= E1000_RAH_AV;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
+ u32 rar_low, rar_high;
|
|
|
+
|
|
|
+ /* HW expects these in little endian so we reverse the byte order
|
|
|
+ * from network order (big endian) to little endian
|
|
|
+ */
|
|
|
+ rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
|
|
|
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
|
|
|
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
|
|
|
+
|
|
|
+ /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
|
|
|
+ * unit hang.
|
|
|
+ *
|
|
|
+ * Description:
|
|
|
+ * If there are any Rx frames queued up or otherwise present in the HW
|
|
|
+ * before RSS is enabled, and then we enable RSS, the HW Rx unit will
|
|
|
+ * hang. To work around this issue, we have to disable receives and
|
|
|
+ * flush out all Rx frames before we enable RSS. To do so, we modify we
|
|
|
+ * redirect all Rx traffic to manageability and then reset the HW.
|
|
|
+ * This flushes away Rx frames, and (since the redirections to
|
|
|
+ * manageability persists across resets) keeps new ones from coming in
|
|
|
+ * while we work. Then, we clear the Address Valid AV bit for all MAC
|
|
|
+ * addresses and undo the re-direction to manageability.
|
|
|
+ * Now, frames are coming in again, but the MAC won't accept them, so
|
|
|
+ * far so good. We now proceed to initialize RSS (if necessary) and
|
|
|
+ * configure the Rx unit. Last, we re-enable the AV bits and continue
|
|
|
+ * on our merry way.
|
|
|
+ */
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ default:
|
|
|
+ /* Indicate to hardware the Address is Valid. */
|
|
|
+ rar_high |= E1000_RAH_AV;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Writes a value to the specified offset in the VLAN filter table.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * offset - Offset in VLAN filer table to write
|
|
|
- * value - Value to write into VLAN filter table
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @offset: Offset in VLAN filer table to write
|
|
|
+ * @value: Value to write into VLAN filter table
|
|
|
+ */
|
|
|
void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
|
|
|
{
|
|
|
- u32 temp;
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
|
|
|
- temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
|
|
|
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- } else {
|
|
|
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- }
|
|
|
+ u32 temp;
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
|
|
|
+ temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ } else {
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Clears the VLAN filer table
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_clear_vfta - Clears the VLAN filer table
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
static void e1000_clear_vfta(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 offset;
|
|
|
- u32 vfta_value = 0;
|
|
|
- u32 vfta_offset = 0;
|
|
|
- u32 vfta_bit_in_reg = 0;
|
|
|
-
|
|
|
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
|
|
|
- /* If the offset we want to clear is the same offset of the
|
|
|
- * manageability VLAN ID, then clear all bits except that of the
|
|
|
- * manageability unit */
|
|
|
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
|
|
|
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
|
|
|
- E1000_WRITE_FLUSH();
|
|
|
- }
|
|
|
+ u32 offset;
|
|
|
+ u32 vfta_value = 0;
|
|
|
+ u32 vfta_offset = 0;
|
|
|
+ u32 vfta_bit_in_reg = 0;
|
|
|
+
|
|
|
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
|
|
|
+ /* If the offset we want to clear is the same offset of the
|
|
|
+ * manageability VLAN ID, then clear all bits except that of the
|
|
|
+ * manageability unit */
|
|
|
+ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
|
|
|
+ E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
|
|
|
+ E1000_WRITE_FLUSH();
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
static s32 e1000_id_led_init(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ledctl;
|
|
|
- const u32 ledctl_mask = 0x000000FF;
|
|
|
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
|
|
|
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
|
|
|
- u16 eeprom_data, i, temp;
|
|
|
- const u16 led_mask = 0x0F;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_id_led_init");
|
|
|
-
|
|
|
- if (hw->mac_type < e1000_82540) {
|
|
|
- /* Nothing to do */
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
-
|
|
|
- ledctl = er32(LEDCTL);
|
|
|
- hw->ledctl_default = ledctl;
|
|
|
- hw->ledctl_mode1 = hw->ledctl_default;
|
|
|
- hw->ledctl_mode2 = hw->ledctl_default;
|
|
|
-
|
|
|
- if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
|
|
|
- DEBUGOUT("EEPROM Read Error\n");
|
|
|
- return -E1000_ERR_EEPROM;
|
|
|
- }
|
|
|
-
|
|
|
- if ((eeprom_data == ID_LED_RESERVED_0000) ||
|
|
|
- (eeprom_data == ID_LED_RESERVED_FFFF)) {
|
|
|
- eeprom_data = ID_LED_DEFAULT;
|
|
|
- }
|
|
|
-
|
|
|
- for (i = 0; i < 4; i++) {
|
|
|
- temp = (eeprom_data >> (i << 2)) & led_mask;
|
|
|
- switch (temp) {
|
|
|
- case ID_LED_ON1_DEF2:
|
|
|
- case ID_LED_ON1_ON2:
|
|
|
- case ID_LED_ON1_OFF2:
|
|
|
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
|
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
|
|
|
- break;
|
|
|
- case ID_LED_OFF1_DEF2:
|
|
|
- case ID_LED_OFF1_ON2:
|
|
|
- case ID_LED_OFF1_OFF2:
|
|
|
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
|
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
|
|
|
- break;
|
|
|
- default:
|
|
|
- /* Do nothing */
|
|
|
- break;
|
|
|
- }
|
|
|
- switch (temp) {
|
|
|
- case ID_LED_DEF1_ON2:
|
|
|
- case ID_LED_ON1_ON2:
|
|
|
- case ID_LED_OFF1_ON2:
|
|
|
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
|
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
|
|
|
- break;
|
|
|
- case ID_LED_DEF1_OFF2:
|
|
|
- case ID_LED_ON1_OFF2:
|
|
|
- case ID_LED_OFF1_OFF2:
|
|
|
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
|
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
|
|
|
- break;
|
|
|
- default:
|
|
|
- /* Do nothing */
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 ledctl;
|
|
|
+ const u32 ledctl_mask = 0x000000FF;
|
|
|
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
|
|
|
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
|
|
|
+ u16 eeprom_data, i, temp;
|
|
|
+ const u16 led_mask = 0x0F;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_id_led_init");
|
|
|
+
|
|
|
+ if (hw->mac_type < e1000_82540) {
|
|
|
+ /* Nothing to do */
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+
|
|
|
+ ledctl = er32(LEDCTL);
|
|
|
+ hw->ledctl_default = ledctl;
|
|
|
+ hw->ledctl_mode1 = hw->ledctl_default;
|
|
|
+ hw->ledctl_mode2 = hw->ledctl_default;
|
|
|
+
|
|
|
+ if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
|
|
|
+ DEBUGOUT("EEPROM Read Error\n");
|
|
|
+ return -E1000_ERR_EEPROM;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((eeprom_data == ID_LED_RESERVED_0000) ||
|
|
|
+ (eeprom_data == ID_LED_RESERVED_FFFF)) {
|
|
|
+ eeprom_data = ID_LED_DEFAULT;
|
|
|
+ }
|
|
|
+
|
|
|
+ for (i = 0; i < 4; i++) {
|
|
|
+ temp = (eeprom_data >> (i << 2)) & led_mask;
|
|
|
+ switch (temp) {
|
|
|
+ case ID_LED_ON1_DEF2:
|
|
|
+ case ID_LED_ON1_ON2:
|
|
|
+ case ID_LED_ON1_OFF2:
|
|
|
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
|
+ hw->ledctl_mode1 |= ledctl_on << (i << 3);
|
|
|
+ break;
|
|
|
+ case ID_LED_OFF1_DEF2:
|
|
|
+ case ID_LED_OFF1_ON2:
|
|
|
+ case ID_LED_OFF1_OFF2:
|
|
|
+ hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
|
+ hw->ledctl_mode1 |= ledctl_off << (i << 3);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ /* Do nothing */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ switch (temp) {
|
|
|
+ case ID_LED_DEF1_ON2:
|
|
|
+ case ID_LED_ON1_ON2:
|
|
|
+ case ID_LED_OFF1_ON2:
|
|
|
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
|
+ hw->ledctl_mode2 |= ledctl_on << (i << 3);
|
|
|
+ break;
|
|
|
+ case ID_LED_DEF1_OFF2:
|
|
|
+ case ID_LED_ON1_OFF2:
|
|
|
+ case ID_LED_OFF1_OFF2:
|
|
|
+ hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
|
+ hw->ledctl_mode2 |= ledctl_off << (i << 3);
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ /* Do nothing */
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Prepares SW controlable LED for use and saves the current state of the LED.
|
|
|
+/**
|
|
|
+ * e1000_setup_led
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ * Prepares SW controlable LED for use and saves the current state of the LED.
|
|
|
+ */
|
|
|
s32 e1000_setup_led(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ledctl;
|
|
|
- s32 ret_val = E1000_SUCCESS;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_setup_led");
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- case e1000_82543:
|
|
|
- case e1000_82544:
|
|
|
- /* No setup necessary */
|
|
|
- break;
|
|
|
- case e1000_82541:
|
|
|
- case e1000_82547:
|
|
|
- case e1000_82541_rev_2:
|
|
|
- case e1000_82547_rev_2:
|
|
|
- /* Turn off PHY Smart Power Down (if enabled) */
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
- &hw->phy_spd_default);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
- (u16)(hw->phy_spd_default &
|
|
|
- ~IGP01E1000_GMII_SPD));
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- /* Fall Through */
|
|
|
- default:
|
|
|
- if (hw->media_type == e1000_media_type_fiber) {
|
|
|
- ledctl = er32(LEDCTL);
|
|
|
- /* Save current LEDCTL settings */
|
|
|
- hw->ledctl_default = ledctl;
|
|
|
- /* Turn off LED0 */
|
|
|
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
|
|
|
- E1000_LEDCTL_LED0_BLINK |
|
|
|
- E1000_LEDCTL_LED0_MODE_MASK);
|
|
|
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
|
|
|
- E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
|
- ew32(LEDCTL, ledctl);
|
|
|
- } else if (hw->media_type == e1000_media_type_copper)
|
|
|
- ew32(LEDCTL, hw->ledctl_mode1);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 ledctl;
|
|
|
+ s32 ret_val = E1000_SUCCESS;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_setup_led");
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ case e1000_82543:
|
|
|
+ case e1000_82544:
|
|
|
+ /* No setup necessary */
|
|
|
+ break;
|
|
|
+ case e1000_82541:
|
|
|
+ case e1000_82547:
|
|
|
+ case e1000_82541_rev_2:
|
|
|
+ case e1000_82547_rev_2:
|
|
|
+ /* Turn off PHY Smart Power Down (if enabled) */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
+ &hw->phy_spd_default);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
+ (u16) (hw->phy_spd_default &
|
|
|
+ ~IGP01E1000_GMII_SPD));
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ /* Fall Through */
|
|
|
+ default:
|
|
|
+ if (hw->media_type == e1000_media_type_fiber) {
|
|
|
+ ledctl = er32(LEDCTL);
|
|
|
+ /* Save current LEDCTL settings */
|
|
|
+ hw->ledctl_default = ledctl;
|
|
|
+ /* Turn off LED0 */
|
|
|
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
|
|
|
+ E1000_LEDCTL_LED0_BLINK |
|
|
|
+ E1000_LEDCTL_LED0_MODE_MASK);
|
|
|
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
|
|
|
+ E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
|
+ ew32(LEDCTL, ledctl);
|
|
|
+ } else if (hw->media_type == e1000_media_type_copper)
|
|
|
+ ew32(LEDCTL, hw->ledctl_mode1);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Restores the saved state of the SW controlable LED.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
s32 e1000_cleanup_led(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val = E1000_SUCCESS;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_cleanup_led");
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- case e1000_82543:
|
|
|
- case e1000_82544:
|
|
|
- /* No cleanup necessary */
|
|
|
- break;
|
|
|
- case e1000_82541:
|
|
|
- case e1000_82547:
|
|
|
- case e1000_82541_rev_2:
|
|
|
- case e1000_82547_rev_2:
|
|
|
- /* Turn on PHY Smart Power Down (if previously enabled) */
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
- hw->phy_spd_default);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- /* Fall Through */
|
|
|
- default:
|
|
|
- /* Restore LEDCTL settings */
|
|
|
- ew32(LEDCTL, hw->ledctl_default);
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val = E1000_SUCCESS;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_cleanup_led");
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ case e1000_82543:
|
|
|
+ case e1000_82544:
|
|
|
+ /* No cleanup necessary */
|
|
|
+ break;
|
|
|
+ case e1000_82541:
|
|
|
+ case e1000_82547:
|
|
|
+ case e1000_82541_rev_2:
|
|
|
+ case e1000_82547_rev_2:
|
|
|
+ /* Turn on PHY Smart Power Down (if previously enabled) */
|
|
|
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
+ hw->phy_spd_default);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ /* Fall Through */
|
|
|
+ default:
|
|
|
+ /* Restore LEDCTL settings */
|
|
|
+ ew32(LEDCTL, hw->ledctl_default);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Turns on the software controllable LED
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_led_on - Turns on the software controllable LED
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
s32 e1000_led_on(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl = er32(CTRL);
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_led_on");
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- case e1000_82543:
|
|
|
- /* Set SW Defineable Pin 0 to turn on the LED */
|
|
|
- ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- break;
|
|
|
- case e1000_82544:
|
|
|
- if (hw->media_type == e1000_media_type_fiber) {
|
|
|
- /* Set SW Defineable Pin 0 to turn on the LED */
|
|
|
- ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- } else {
|
|
|
- /* Clear SW Defineable Pin 0 to turn on the LED */
|
|
|
- ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- }
|
|
|
- break;
|
|
|
- default:
|
|
|
- if (hw->media_type == e1000_media_type_fiber) {
|
|
|
- /* Clear SW Defineable Pin 0 to turn on the LED */
|
|
|
- ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- } else if (hw->media_type == e1000_media_type_copper) {
|
|
|
- ew32(LEDCTL, hw->ledctl_mode2);
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- ew32(CTRL, ctrl);
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 ctrl = er32(CTRL);
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_led_on");
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ case e1000_82543:
|
|
|
+ /* Set SW Defineable Pin 0 to turn on the LED */
|
|
|
+ ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ break;
|
|
|
+ case e1000_82544:
|
|
|
+ if (hw->media_type == e1000_media_type_fiber) {
|
|
|
+ /* Set SW Defineable Pin 0 to turn on the LED */
|
|
|
+ ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ } else {
|
|
|
+ /* Clear SW Defineable Pin 0 to turn on the LED */
|
|
|
+ ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ if (hw->media_type == e1000_media_type_fiber) {
|
|
|
+ /* Clear SW Defineable Pin 0 to turn on the LED */
|
|
|
+ ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ } else if (hw->media_type == e1000_media_type_copper) {
|
|
|
+ ew32(LEDCTL, hw->ledctl_mode2);
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Turns off the software controllable LED
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_led_off - Turns off the software controllable LED
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
s32 e1000_led_off(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 ctrl = er32(CTRL);
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_led_off");
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- case e1000_82543:
|
|
|
- /* Clear SW Defineable Pin 0 to turn off the LED */
|
|
|
- ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- break;
|
|
|
- case e1000_82544:
|
|
|
- if (hw->media_type == e1000_media_type_fiber) {
|
|
|
- /* Clear SW Defineable Pin 0 to turn off the LED */
|
|
|
- ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- } else {
|
|
|
- /* Set SW Defineable Pin 0 to turn off the LED */
|
|
|
- ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- }
|
|
|
- break;
|
|
|
- default:
|
|
|
- if (hw->media_type == e1000_media_type_fiber) {
|
|
|
- /* Set SW Defineable Pin 0 to turn off the LED */
|
|
|
- ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
- ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
- } else if (hw->media_type == e1000_media_type_copper) {
|
|
|
- ew32(LEDCTL, hw->ledctl_mode1);
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- ew32(CTRL, ctrl);
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ u32 ctrl = er32(CTRL);
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_led_off");
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ case e1000_82543:
|
|
|
+ /* Clear SW Defineable Pin 0 to turn off the LED */
|
|
|
+ ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ break;
|
|
|
+ case e1000_82544:
|
|
|
+ if (hw->media_type == e1000_media_type_fiber) {
|
|
|
+ /* Clear SW Defineable Pin 0 to turn off the LED */
|
|
|
+ ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ } else {
|
|
|
+ /* Set SW Defineable Pin 0 to turn off the LED */
|
|
|
+ ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ if (hw->media_type == e1000_media_type_fiber) {
|
|
|
+ /* Set SW Defineable Pin 0 to turn off the LED */
|
|
|
+ ctrl |= E1000_CTRL_SWDPIN0;
|
|
|
+ ctrl |= E1000_CTRL_SWDPIO0;
|
|
|
+ } else if (hw->media_type == e1000_media_type_copper) {
|
|
|
+ ew32(LEDCTL, hw->ledctl_mode1);
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ ew32(CTRL, ctrl);
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Clears all hardware statistics counters.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+/**
|
|
|
+ * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ */
|
|
|
static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
|
|
|
{
|
|
|
- volatile u32 temp;
|
|
|
-
|
|
|
- temp = er32(CRCERRS);
|
|
|
- temp = er32(SYMERRS);
|
|
|
- temp = er32(MPC);
|
|
|
- temp = er32(SCC);
|
|
|
- temp = er32(ECOL);
|
|
|
- temp = er32(MCC);
|
|
|
- temp = er32(LATECOL);
|
|
|
- temp = er32(COLC);
|
|
|
- temp = er32(DC);
|
|
|
- temp = er32(SEC);
|
|
|
- temp = er32(RLEC);
|
|
|
- temp = er32(XONRXC);
|
|
|
- temp = er32(XONTXC);
|
|
|
- temp = er32(XOFFRXC);
|
|
|
- temp = er32(XOFFTXC);
|
|
|
- temp = er32(FCRUC);
|
|
|
-
|
|
|
- temp = er32(PRC64);
|
|
|
- temp = er32(PRC127);
|
|
|
- temp = er32(PRC255);
|
|
|
- temp = er32(PRC511);
|
|
|
- temp = er32(PRC1023);
|
|
|
- temp = er32(PRC1522);
|
|
|
-
|
|
|
- temp = er32(GPRC);
|
|
|
- temp = er32(BPRC);
|
|
|
- temp = er32(MPRC);
|
|
|
- temp = er32(GPTC);
|
|
|
- temp = er32(GORCL);
|
|
|
- temp = er32(GORCH);
|
|
|
- temp = er32(GOTCL);
|
|
|
- temp = er32(GOTCH);
|
|
|
- temp = er32(RNBC);
|
|
|
- temp = er32(RUC);
|
|
|
- temp = er32(RFC);
|
|
|
- temp = er32(ROC);
|
|
|
- temp = er32(RJC);
|
|
|
- temp = er32(TORL);
|
|
|
- temp = er32(TORH);
|
|
|
- temp = er32(TOTL);
|
|
|
- temp = er32(TOTH);
|
|
|
- temp = er32(TPR);
|
|
|
- temp = er32(TPT);
|
|
|
-
|
|
|
- temp = er32(PTC64);
|
|
|
- temp = er32(PTC127);
|
|
|
- temp = er32(PTC255);
|
|
|
- temp = er32(PTC511);
|
|
|
- temp = er32(PTC1023);
|
|
|
- temp = er32(PTC1522);
|
|
|
-
|
|
|
- temp = er32(MPTC);
|
|
|
- temp = er32(BPTC);
|
|
|
-
|
|
|
- if (hw->mac_type < e1000_82543) return;
|
|
|
-
|
|
|
- temp = er32(ALGNERRC);
|
|
|
- temp = er32(RXERRC);
|
|
|
- temp = er32(TNCRS);
|
|
|
- temp = er32(CEXTERR);
|
|
|
- temp = er32(TSCTC);
|
|
|
- temp = er32(TSCTFC);
|
|
|
-
|
|
|
- if (hw->mac_type <= e1000_82544) return;
|
|
|
-
|
|
|
- temp = er32(MGTPRC);
|
|
|
- temp = er32(MGTPDC);
|
|
|
- temp = er32(MGTPTC);
|
|
|
+ volatile u32 temp;
|
|
|
+
|
|
|
+ temp = er32(CRCERRS);
|
|
|
+ temp = er32(SYMERRS);
|
|
|
+ temp = er32(MPC);
|
|
|
+ temp = er32(SCC);
|
|
|
+ temp = er32(ECOL);
|
|
|
+ temp = er32(MCC);
|
|
|
+ temp = er32(LATECOL);
|
|
|
+ temp = er32(COLC);
|
|
|
+ temp = er32(DC);
|
|
|
+ temp = er32(SEC);
|
|
|
+ temp = er32(RLEC);
|
|
|
+ temp = er32(XONRXC);
|
|
|
+ temp = er32(XONTXC);
|
|
|
+ temp = er32(XOFFRXC);
|
|
|
+ temp = er32(XOFFTXC);
|
|
|
+ temp = er32(FCRUC);
|
|
|
+
|
|
|
+ temp = er32(PRC64);
|
|
|
+ temp = er32(PRC127);
|
|
|
+ temp = er32(PRC255);
|
|
|
+ temp = er32(PRC511);
|
|
|
+ temp = er32(PRC1023);
|
|
|
+ temp = er32(PRC1522);
|
|
|
+
|
|
|
+ temp = er32(GPRC);
|
|
|
+ temp = er32(BPRC);
|
|
|
+ temp = er32(MPRC);
|
|
|
+ temp = er32(GPTC);
|
|
|
+ temp = er32(GORCL);
|
|
|
+ temp = er32(GORCH);
|
|
|
+ temp = er32(GOTCL);
|
|
|
+ temp = er32(GOTCH);
|
|
|
+ temp = er32(RNBC);
|
|
|
+ temp = er32(RUC);
|
|
|
+ temp = er32(RFC);
|
|
|
+ temp = er32(ROC);
|
|
|
+ temp = er32(RJC);
|
|
|
+ temp = er32(TORL);
|
|
|
+ temp = er32(TORH);
|
|
|
+ temp = er32(TOTL);
|
|
|
+ temp = er32(TOTH);
|
|
|
+ temp = er32(TPR);
|
|
|
+ temp = er32(TPT);
|
|
|
+
|
|
|
+ temp = er32(PTC64);
|
|
|
+ temp = er32(PTC127);
|
|
|
+ temp = er32(PTC255);
|
|
|
+ temp = er32(PTC511);
|
|
|
+ temp = er32(PTC1023);
|
|
|
+ temp = er32(PTC1522);
|
|
|
+
|
|
|
+ temp = er32(MPTC);
|
|
|
+ temp = er32(BPTC);
|
|
|
+
|
|
|
+ if (hw->mac_type < e1000_82543)
|
|
|
+ return;
|
|
|
+
|
|
|
+ temp = er32(ALGNERRC);
|
|
|
+ temp = er32(RXERRC);
|
|
|
+ temp = er32(TNCRS);
|
|
|
+ temp = er32(CEXTERR);
|
|
|
+ temp = er32(TSCTC);
|
|
|
+ temp = er32(TSCTFC);
|
|
|
+
|
|
|
+ if (hw->mac_type <= e1000_82544)
|
|
|
+ return;
|
|
|
+
|
|
|
+ temp = er32(MGTPRC);
|
|
|
+ temp = er32(MGTPDC);
|
|
|
+ temp = er32(MGTPTC);
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Resets Adaptive IFS to its default state.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
* Call this after e1000_init_hw. You may override the IFS defaults by setting
|
|
|
* hw->ifs_params_forced to true. However, you must initialize hw->
|
|
|
* current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
|
|
|
* before calling this function.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
void e1000_reset_adaptive(struct e1000_hw *hw)
|
|
|
{
|
|
|
- DEBUGFUNC("e1000_reset_adaptive");
|
|
|
-
|
|
|
- if (hw->adaptive_ifs) {
|
|
|
- if (!hw->ifs_params_forced) {
|
|
|
- hw->current_ifs_val = 0;
|
|
|
- hw->ifs_min_val = IFS_MIN;
|
|
|
- hw->ifs_max_val = IFS_MAX;
|
|
|
- hw->ifs_step_size = IFS_STEP;
|
|
|
- hw->ifs_ratio = IFS_RATIO;
|
|
|
- }
|
|
|
- hw->in_ifs_mode = false;
|
|
|
- ew32(AIT, 0);
|
|
|
- } else {
|
|
|
- DEBUGOUT("Not in Adaptive IFS mode!\n");
|
|
|
- }
|
|
|
+ DEBUGFUNC("e1000_reset_adaptive");
|
|
|
+
|
|
|
+ if (hw->adaptive_ifs) {
|
|
|
+ if (!hw->ifs_params_forced) {
|
|
|
+ hw->current_ifs_val = 0;
|
|
|
+ hw->ifs_min_val = IFS_MIN;
|
|
|
+ hw->ifs_max_val = IFS_MAX;
|
|
|
+ hw->ifs_step_size = IFS_STEP;
|
|
|
+ hw->ifs_ratio = IFS_RATIO;
|
|
|
+ }
|
|
|
+ hw->in_ifs_mode = false;
|
|
|
+ ew32(AIT, 0);
|
|
|
+ } else {
|
|
|
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
+ * e1000_update_adaptive - update adaptive IFS
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @tx_packets: Number of transmits since last callback
|
|
|
+ * @total_collisions: Number of collisions since last callback
|
|
|
+ *
|
|
|
* Called during the callback/watchdog routine to update IFS value based on
|
|
|
* the ratio of transmits to collisions.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * tx_packets - Number of transmits since last callback
|
|
|
- * total_collisions - Number of collisions since last callback
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
void e1000_update_adaptive(struct e1000_hw *hw)
|
|
|
{
|
|
|
- DEBUGFUNC("e1000_update_adaptive");
|
|
|
-
|
|
|
- if (hw->adaptive_ifs) {
|
|
|
- if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
|
|
|
- if (hw->tx_packet_delta > MIN_NUM_XMITS) {
|
|
|
- hw->in_ifs_mode = true;
|
|
|
- if (hw->current_ifs_val < hw->ifs_max_val) {
|
|
|
- if (hw->current_ifs_val == 0)
|
|
|
- hw->current_ifs_val = hw->ifs_min_val;
|
|
|
- else
|
|
|
- hw->current_ifs_val += hw->ifs_step_size;
|
|
|
- ew32(AIT, hw->current_ifs_val);
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
|
|
|
- hw->current_ifs_val = 0;
|
|
|
- hw->in_ifs_mode = false;
|
|
|
- ew32(AIT, 0);
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- DEBUGOUT("Not in Adaptive IFS mode!\n");
|
|
|
- }
|
|
|
+ DEBUGFUNC("e1000_update_adaptive");
|
|
|
+
|
|
|
+ if (hw->adaptive_ifs) {
|
|
|
+ if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
|
|
|
+ if (hw->tx_packet_delta > MIN_NUM_XMITS) {
|
|
|
+ hw->in_ifs_mode = true;
|
|
|
+ if (hw->current_ifs_val < hw->ifs_max_val) {
|
|
|
+ if (hw->current_ifs_val == 0)
|
|
|
+ hw->current_ifs_val =
|
|
|
+ hw->ifs_min_val;
|
|
|
+ else
|
|
|
+ hw->current_ifs_val +=
|
|
|
+ hw->ifs_step_size;
|
|
|
+ ew32(AIT, hw->current_ifs_val);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if (hw->in_ifs_mode
|
|
|
+ && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
|
|
|
+ hw->current_ifs_val = 0;
|
|
|
+ hw->in_ifs_mode = false;
|
|
|
+ ew32(AIT, 0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
|
|
|
+/**
|
|
|
+ * e1000_tbi_adjust_stats
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @frame_len: The length of the frame in question
|
|
|
+ * @mac_addr: The Ethernet destination address of the frame in question
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * frame_len - The length of the frame in question
|
|
|
- * mac_addr - The Ethernet destination address of the frame in question
|
|
|
- *****************************************************************************/
|
|
|
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
|
|
|
+ */
|
|
|
void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
|
|
|
u32 frame_len, u8 *mac_addr)
|
|
|
{
|
|
|
- u64 carry_bit;
|
|
|
-
|
|
|
- /* First adjust the frame length. */
|
|
|
- frame_len--;
|
|
|
- /* We need to adjust the statistics counters, since the hardware
|
|
|
- * counters overcount this packet as a CRC error and undercount
|
|
|
- * the packet as a good packet
|
|
|
- */
|
|
|
- /* This packet should not be counted as a CRC error. */
|
|
|
- stats->crcerrs--;
|
|
|
- /* This packet does count as a Good Packet Received. */
|
|
|
- stats->gprc++;
|
|
|
-
|
|
|
- /* Adjust the Good Octets received counters */
|
|
|
- carry_bit = 0x80000000 & stats->gorcl;
|
|
|
- stats->gorcl += frame_len;
|
|
|
- /* If the high bit of Gorcl (the low 32 bits of the Good Octets
|
|
|
- * Received Count) was one before the addition,
|
|
|
- * AND it is zero after, then we lost the carry out,
|
|
|
- * need to add one to Gorch (Good Octets Received Count High).
|
|
|
- * This could be simplified if all environments supported
|
|
|
- * 64-bit integers.
|
|
|
- */
|
|
|
- if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
|
|
|
- stats->gorch++;
|
|
|
- /* Is this a broadcast or multicast? Check broadcast first,
|
|
|
- * since the test for a multicast frame will test positive on
|
|
|
- * a broadcast frame.
|
|
|
- */
|
|
|
- if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff))
|
|
|
- /* Broadcast packet */
|
|
|
- stats->bprc++;
|
|
|
- else if (*mac_addr & 0x01)
|
|
|
- /* Multicast packet */
|
|
|
- stats->mprc++;
|
|
|
-
|
|
|
- if (frame_len == hw->max_frame_size) {
|
|
|
- /* In this case, the hardware has overcounted the number of
|
|
|
- * oversize frames.
|
|
|
- */
|
|
|
- if (stats->roc > 0)
|
|
|
- stats->roc--;
|
|
|
- }
|
|
|
-
|
|
|
- /* Adjust the bin counters when the extra byte put the frame in the
|
|
|
- * wrong bin. Remember that the frame_len was adjusted above.
|
|
|
- */
|
|
|
- if (frame_len == 64) {
|
|
|
- stats->prc64++;
|
|
|
- stats->prc127--;
|
|
|
- } else if (frame_len == 127) {
|
|
|
- stats->prc127++;
|
|
|
- stats->prc255--;
|
|
|
- } else if (frame_len == 255) {
|
|
|
- stats->prc255++;
|
|
|
- stats->prc511--;
|
|
|
- } else if (frame_len == 511) {
|
|
|
- stats->prc511++;
|
|
|
- stats->prc1023--;
|
|
|
- } else if (frame_len == 1023) {
|
|
|
- stats->prc1023++;
|
|
|
- stats->prc1522--;
|
|
|
- } else if (frame_len == 1522) {
|
|
|
- stats->prc1522++;
|
|
|
- }
|
|
|
+ u64 carry_bit;
|
|
|
+
|
|
|
+ /* First adjust the frame length. */
|
|
|
+ frame_len--;
|
|
|
+ /* We need to adjust the statistics counters, since the hardware
|
|
|
+ * counters overcount this packet as a CRC error and undercount
|
|
|
+ * the packet as a good packet
|
|
|
+ */
|
|
|
+ /* This packet should not be counted as a CRC error. */
|
|
|
+ stats->crcerrs--;
|
|
|
+ /* This packet does count as a Good Packet Received. */
|
|
|
+ stats->gprc++;
|
|
|
+
|
|
|
+ /* Adjust the Good Octets received counters */
|
|
|
+ carry_bit = 0x80000000 & stats->gorcl;
|
|
|
+ stats->gorcl += frame_len;
|
|
|
+ /* If the high bit of Gorcl (the low 32 bits of the Good Octets
|
|
|
+ * Received Count) was one before the addition,
|
|
|
+ * AND it is zero after, then we lost the carry out,
|
|
|
+ * need to add one to Gorch (Good Octets Received Count High).
|
|
|
+ * This could be simplified if all environments supported
|
|
|
+ * 64-bit integers.
|
|
|
+ */
|
|
|
+ if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
|
|
|
+ stats->gorch++;
|
|
|
+ /* Is this a broadcast or multicast? Check broadcast first,
|
|
|
+ * since the test for a multicast frame will test positive on
|
|
|
+ * a broadcast frame.
|
|
|
+ */
|
|
|
+ if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
|
|
|
+ /* Broadcast packet */
|
|
|
+ stats->bprc++;
|
|
|
+ else if (*mac_addr & 0x01)
|
|
|
+ /* Multicast packet */
|
|
|
+ stats->mprc++;
|
|
|
+
|
|
|
+ if (frame_len == hw->max_frame_size) {
|
|
|
+ /* In this case, the hardware has overcounted the number of
|
|
|
+ * oversize frames.
|
|
|
+ */
|
|
|
+ if (stats->roc > 0)
|
|
|
+ stats->roc--;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Adjust the bin counters when the extra byte put the frame in the
|
|
|
+ * wrong bin. Remember that the frame_len was adjusted above.
|
|
|
+ */
|
|
|
+ if (frame_len == 64) {
|
|
|
+ stats->prc64++;
|
|
|
+ stats->prc127--;
|
|
|
+ } else if (frame_len == 127) {
|
|
|
+ stats->prc127++;
|
|
|
+ stats->prc255--;
|
|
|
+ } else if (frame_len == 255) {
|
|
|
+ stats->prc255++;
|
|
|
+ stats->prc511--;
|
|
|
+ } else if (frame_len == 511) {
|
|
|
+ stats->prc511++;
|
|
|
+ stats->prc1023--;
|
|
|
+ } else if (frame_len == 1023) {
|
|
|
+ stats->prc1023++;
|
|
|
+ stats->prc1522--;
|
|
|
+ } else if (frame_len == 1522) {
|
|
|
+ stats->prc1522++;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Gets the current PCI bus type, speed, and width of the hardware
|
|
|
+/**
|
|
|
+ * e1000_get_bus_info
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ * Gets the current PCI bus type, speed, and width of the hardware
|
|
|
+ */
|
|
|
void e1000_get_bus_info(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 status;
|
|
|
-
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82542_rev2_0:
|
|
|
- case e1000_82542_rev2_1:
|
|
|
- hw->bus_type = e1000_bus_type_pci;
|
|
|
- hw->bus_speed = e1000_bus_speed_unknown;
|
|
|
- hw->bus_width = e1000_bus_width_unknown;
|
|
|
- break;
|
|
|
- default:
|
|
|
- status = er32(STATUS);
|
|
|
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
|
|
|
- e1000_bus_type_pcix : e1000_bus_type_pci;
|
|
|
-
|
|
|
- if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
|
|
|
- hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
|
|
|
- e1000_bus_speed_66 : e1000_bus_speed_120;
|
|
|
- } else if (hw->bus_type == e1000_bus_type_pci) {
|
|
|
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
|
|
|
- e1000_bus_speed_66 : e1000_bus_speed_33;
|
|
|
- } else {
|
|
|
- switch (status & E1000_STATUS_PCIX_SPEED) {
|
|
|
- case E1000_STATUS_PCIX_SPEED_66:
|
|
|
- hw->bus_speed = e1000_bus_speed_66;
|
|
|
- break;
|
|
|
- case E1000_STATUS_PCIX_SPEED_100:
|
|
|
- hw->bus_speed = e1000_bus_speed_100;
|
|
|
- break;
|
|
|
- case E1000_STATUS_PCIX_SPEED_133:
|
|
|
- hw->bus_speed = e1000_bus_speed_133;
|
|
|
- break;
|
|
|
- default:
|
|
|
- hw->bus_speed = e1000_bus_speed_reserved;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
|
|
|
- e1000_bus_width_64 : e1000_bus_width_32;
|
|
|
- break;
|
|
|
- }
|
|
|
+ u32 status;
|
|
|
+
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82542_rev2_0:
|
|
|
+ case e1000_82542_rev2_1:
|
|
|
+ hw->bus_type = e1000_bus_type_pci;
|
|
|
+ hw->bus_speed = e1000_bus_speed_unknown;
|
|
|
+ hw->bus_width = e1000_bus_width_unknown;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ status = er32(STATUS);
|
|
|
+ hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
|
|
|
+ e1000_bus_type_pcix : e1000_bus_type_pci;
|
|
|
+
|
|
|
+ if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
|
|
|
+ hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
|
|
|
+ e1000_bus_speed_66 : e1000_bus_speed_120;
|
|
|
+ } else if (hw->bus_type == e1000_bus_type_pci) {
|
|
|
+ hw->bus_speed = (status & E1000_STATUS_PCI66) ?
|
|
|
+ e1000_bus_speed_66 : e1000_bus_speed_33;
|
|
|
+ } else {
|
|
|
+ switch (status & E1000_STATUS_PCIX_SPEED) {
|
|
|
+ case E1000_STATUS_PCIX_SPEED_66:
|
|
|
+ hw->bus_speed = e1000_bus_speed_66;
|
|
|
+ break;
|
|
|
+ case E1000_STATUS_PCIX_SPEED_100:
|
|
|
+ hw->bus_speed = e1000_bus_speed_100;
|
|
|
+ break;
|
|
|
+ case E1000_STATUS_PCIX_SPEED_133:
|
|
|
+ hw->bus_speed = e1000_bus_speed_133;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ hw->bus_speed = e1000_bus_speed_reserved;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ hw->bus_width = (status & E1000_STATUS_BUS64) ?
|
|
|
+ e1000_bus_width_64 : e1000_bus_width_32;
|
|
|
+ break;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
+/**
|
|
|
+ * e1000_write_reg_io
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @offset: offset to write to
|
|
|
+ * @value: value to write
|
|
|
+ *
|
|
|
* Writes a value to one of the devices registers using port I/O (as opposed to
|
|
|
* memory mapped I/O). Only 82544 and newer devices support port I/O.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * offset - offset to write to
|
|
|
- * value - value to write
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
|
|
|
{
|
|
|
- unsigned long io_addr = hw->io_base;
|
|
|
- unsigned long io_data = hw->io_base + 4;
|
|
|
+ unsigned long io_addr = hw->io_base;
|
|
|
+ unsigned long io_data = hw->io_base + 4;
|
|
|
|
|
|
- e1000_io_write(hw, io_addr, offset);
|
|
|
- e1000_io_write(hw, io_data, value);
|
|
|
+ e1000_io_write(hw, io_addr, offset);
|
|
|
+ e1000_io_write(hw, io_data, value);
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Estimates the cable length.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * min_length - The estimated minimum length
|
|
|
- * max_length - The estimated maximum length
|
|
|
+/**
|
|
|
+ * e1000_get_cable_length - Estimates the cable length.
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @min_length: The estimated minimum length
|
|
|
+ * @max_length: The estimated maximum length
|
|
|
*
|
|
|
* returns: - E1000_ERR_XXX
|
|
|
* E1000_SUCCESS
|
|
|
@@ -4876,112 +4957,115 @@ static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
|
|
|
* So for M88 phy's, this function interprets the one value returned from the
|
|
|
* register to the minimum and maximum range.
|
|
|
* For IGP phy's, the function calculates the range by the AGC registers.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
|
|
|
u16 *max_length)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 agc_value = 0;
|
|
|
- u16 i, phy_data;
|
|
|
- u16 cable_length;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_get_cable_length");
|
|
|
-
|
|
|
- *min_length = *max_length = 0;
|
|
|
-
|
|
|
- /* Use old method for Phy older than IGP */
|
|
|
- if (hw->phy_type == e1000_phy_m88) {
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
|
|
|
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
|
|
|
-
|
|
|
- /* Convert the enum value to ranged values */
|
|
|
- switch (cable_length) {
|
|
|
- case e1000_cable_length_50:
|
|
|
- *min_length = 0;
|
|
|
- *max_length = e1000_igp_cable_length_50;
|
|
|
- break;
|
|
|
- case e1000_cable_length_50_80:
|
|
|
- *min_length = e1000_igp_cable_length_50;
|
|
|
- *max_length = e1000_igp_cable_length_80;
|
|
|
- break;
|
|
|
- case e1000_cable_length_80_110:
|
|
|
- *min_length = e1000_igp_cable_length_80;
|
|
|
- *max_length = e1000_igp_cable_length_110;
|
|
|
- break;
|
|
|
- case e1000_cable_length_110_140:
|
|
|
- *min_length = e1000_igp_cable_length_110;
|
|
|
- *max_length = e1000_igp_cable_length_140;
|
|
|
- break;
|
|
|
- case e1000_cable_length_140:
|
|
|
- *min_length = e1000_igp_cable_length_140;
|
|
|
- *max_length = e1000_igp_cable_length_170;
|
|
|
- break;
|
|
|
- default:
|
|
|
- return -E1000_ERR_PHY;
|
|
|
- break;
|
|
|
- }
|
|
|
- } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
|
|
|
- u16 cur_agc_value;
|
|
|
- u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
|
|
|
- u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
|
|
|
- {IGP01E1000_PHY_AGC_A,
|
|
|
- IGP01E1000_PHY_AGC_B,
|
|
|
- IGP01E1000_PHY_AGC_C,
|
|
|
- IGP01E1000_PHY_AGC_D};
|
|
|
- /* Read the AGC registers for all channels */
|
|
|
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
|
|
|
-
|
|
|
- /* Value bound check. */
|
|
|
- if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
|
|
|
- (cur_agc_value == 0))
|
|
|
- return -E1000_ERR_PHY;
|
|
|
-
|
|
|
- agc_value += cur_agc_value;
|
|
|
-
|
|
|
- /* Update minimal AGC value. */
|
|
|
- if (min_agc_value > cur_agc_value)
|
|
|
- min_agc_value = cur_agc_value;
|
|
|
- }
|
|
|
-
|
|
|
- /* Remove the minimal AGC result for length < 50m */
|
|
|
- if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
|
|
|
- agc_value -= min_agc_value;
|
|
|
-
|
|
|
- /* Get the average length of the remaining 3 channels */
|
|
|
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
|
|
|
- } else {
|
|
|
- /* Get the average length of all the 4 channels. */
|
|
|
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
|
|
|
- }
|
|
|
-
|
|
|
- /* Set the range of the calculated length. */
|
|
|
- *min_length = ((e1000_igp_cable_length_table[agc_value] -
|
|
|
- IGP01E1000_AGC_RANGE) > 0) ?
|
|
|
- (e1000_igp_cable_length_table[agc_value] -
|
|
|
- IGP01E1000_AGC_RANGE) : 0;
|
|
|
- *max_length = e1000_igp_cable_length_table[agc_value] +
|
|
|
- IGP01E1000_AGC_RANGE;
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 agc_value = 0;
|
|
|
+ u16 i, phy_data;
|
|
|
+ u16 cable_length;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_get_cable_length");
|
|
|
+
|
|
|
+ *min_length = *max_length = 0;
|
|
|
+
|
|
|
+ /* Use old method for Phy older than IGP */
|
|
|
+ if (hw->phy_type == e1000_phy_m88) {
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
|
|
|
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
|
|
|
+
|
|
|
+ /* Convert the enum value to ranged values */
|
|
|
+ switch (cable_length) {
|
|
|
+ case e1000_cable_length_50:
|
|
|
+ *min_length = 0;
|
|
|
+ *max_length = e1000_igp_cable_length_50;
|
|
|
+ break;
|
|
|
+ case e1000_cable_length_50_80:
|
|
|
+ *min_length = e1000_igp_cable_length_50;
|
|
|
+ *max_length = e1000_igp_cable_length_80;
|
|
|
+ break;
|
|
|
+ case e1000_cable_length_80_110:
|
|
|
+ *min_length = e1000_igp_cable_length_80;
|
|
|
+ *max_length = e1000_igp_cable_length_110;
|
|
|
+ break;
|
|
|
+ case e1000_cable_length_110_140:
|
|
|
+ *min_length = e1000_igp_cable_length_110;
|
|
|
+ *max_length = e1000_igp_cable_length_140;
|
|
|
+ break;
|
|
|
+ case e1000_cable_length_140:
|
|
|
+ *min_length = e1000_igp_cable_length_140;
|
|
|
+ *max_length = e1000_igp_cable_length_170;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return -E1000_ERR_PHY;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
|
|
|
+ u16 cur_agc_value;
|
|
|
+ u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
|
|
|
+ u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
|
|
|
+ { IGP01E1000_PHY_AGC_A,
|
|
|
+ IGP01E1000_PHY_AGC_B,
|
|
|
+ IGP01E1000_PHY_AGC_C,
|
|
|
+ IGP01E1000_PHY_AGC_D
|
|
|
+ };
|
|
|
+ /* Read the AGC registers for all channels */
|
|
|
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
|
|
|
+
|
|
|
+ /* Value bound check. */
|
|
|
+ if ((cur_agc_value >=
|
|
|
+ IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
|
|
|
+ || (cur_agc_value == 0))
|
|
|
+ return -E1000_ERR_PHY;
|
|
|
+
|
|
|
+ agc_value += cur_agc_value;
|
|
|
+
|
|
|
+ /* Update minimal AGC value. */
|
|
|
+ if (min_agc_value > cur_agc_value)
|
|
|
+ min_agc_value = cur_agc_value;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Remove the minimal AGC result for length < 50m */
|
|
|
+ if (agc_value <
|
|
|
+ IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
|
|
|
+ agc_value -= min_agc_value;
|
|
|
+
|
|
|
+ /* Get the average length of the remaining 3 channels */
|
|
|
+ agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
|
|
|
+ } else {
|
|
|
+ /* Get the average length of all the 4 channels. */
|
|
|
+ agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Set the range of the calculated length. */
|
|
|
+ *min_length = ((e1000_igp_cable_length_table[agc_value] -
|
|
|
+ IGP01E1000_AGC_RANGE) > 0) ?
|
|
|
+ (e1000_igp_cable_length_table[agc_value] -
|
|
|
+ IGP01E1000_AGC_RANGE) : 0;
|
|
|
+ *max_length = e1000_igp_cable_length_table[agc_value] +
|
|
|
+ IGP01E1000_AGC_RANGE;
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Check the cable polarity
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * polarity - output parameter : 0 - Polarity is not reversed
|
|
|
+/**
|
|
|
+ * e1000_check_polarity - Check the cable polarity
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @polarity: output parameter : 0 - Polarity is not reversed
|
|
|
* 1 - Polarity is reversed.
|
|
|
*
|
|
|
* returns: - E1000_ERR_XXX
|
|
|
@@ -4992,62 +5076,65 @@ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
|
|
|
* 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
|
|
|
* return 0. If the link speed is 1000 Mbps the polarity status is in the
|
|
|
* IGP01E1000_PHY_PCS_INIT_REG.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_check_polarity(struct e1000_hw *hw,
|
|
|
e1000_rev_polarity *polarity)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_check_polarity");
|
|
|
-
|
|
|
- if (hw->phy_type == e1000_phy_m88) {
|
|
|
- /* return the Polarity bit in the Status register. */
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
|
|
|
- M88E1000_PSSR_REV_POLARITY_SHIFT) ?
|
|
|
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
|
|
|
-
|
|
|
- } else if (hw->phy_type == e1000_phy_igp) {
|
|
|
- /* Read the Status register to check the speed */
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
|
|
|
- * find the polarity status */
|
|
|
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
|
|
- IGP01E1000_PSSR_SPEED_1000MBPS) {
|
|
|
-
|
|
|
- /* Read the GIG initialization PCS register (0x00B4) */
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Check the polarity bits */
|
|
|
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
|
|
|
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
|
|
|
- } else {
|
|
|
- /* For 10 Mbps, read the polarity bit in the status register. (for
|
|
|
- * 100 Mbps this bit is always 0) */
|
|
|
- *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
|
|
|
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
|
|
|
- }
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_check_polarity");
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_m88) {
|
|
|
+ /* return the Polarity bit in the Status register. */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
|
|
|
+ M88E1000_PSSR_REV_POLARITY_SHIFT) ?
|
|
|
+ e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
|
|
|
+
|
|
|
+ } else if (hw->phy_type == e1000_phy_igp) {
|
|
|
+ /* Read the Status register to check the speed */
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
|
|
|
+ * find the polarity status */
|
|
|
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
|
|
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
|
|
|
+
|
|
|
+ /* Read the GIG initialization PCS register (0x00B4) */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Check the polarity bits */
|
|
|
+ *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
|
|
|
+ e1000_rev_polarity_reversed :
|
|
|
+ e1000_rev_polarity_normal;
|
|
|
+ } else {
|
|
|
+ /* For 10 Mbps, read the polarity bit in the status register. (for
|
|
|
+ * 100 Mbps this bit is always 0) */
|
|
|
+ *polarity =
|
|
|
+ (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
|
|
|
+ e1000_rev_polarity_reversed :
|
|
|
+ e1000_rev_polarity_normal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Check if Downshift occured
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- * downshift - output parameter : 0 - No Downshift ocured.
|
|
|
- * 1 - Downshift ocured.
|
|
|
+/**
|
|
|
+ * e1000_check_downshift - Check if Downshift occurred
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @downshift: output parameter : 0 - No Downshift occurred.
|
|
|
+ * 1 - Downshift occurred.
|
|
|
*
|
|
|
* returns: - E1000_ERR_XXX
|
|
|
* E1000_SUCCESS
|
|
|
@@ -5056,573 +5143,607 @@ static s32 e1000_check_polarity(struct e1000_hw *hw,
|
|
|
* Specific Status register. For IGP phy's, it reads the Downgrade bit in the
|
|
|
* Link Health register. In IGP this bit is latched high, so the driver must
|
|
|
* read it immediately after link is established.
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_check_downshift(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_check_downshift");
|
|
|
-
|
|
|
- if (hw->phy_type == e1000_phy_igp) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
|
|
|
- } else if (hw->phy_type == e1000_phy_m88) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
|
|
|
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
|
|
|
- }
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_check_downshift");
|
|
|
+
|
|
|
+ if (hw->phy_type == e1000_phy_igp) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ hw->speed_downgraded =
|
|
|
+ (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
|
|
|
+ } else if (hw->phy_type == e1000_phy_m88) {
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
|
|
|
+ M88E1000_PSSR_DOWNSHIFT_SHIFT;
|
|
|
+ }
|
|
|
|
|
|
- return E1000_SUCCESS;
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/*****************************************************************************
|
|
|
- *
|
|
|
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
|
|
|
- * gigabit link is achieved to improve link quality.
|
|
|
- *
|
|
|
- * hw: Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_config_dsp_after_link_change
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @link_up: was link up at the time this was called
|
|
|
*
|
|
|
* returns: - E1000_ERR_PHY if fail to read/write the PHY
|
|
|
* E1000_SUCCESS at any other case.
|
|
|
*
|
|
|
- ****************************************************************************/
|
|
|
+ * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
|
|
|
+ * gigabit link is achieved to improve link quality.
|
|
|
+ */
|
|
|
|
|
|
static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data, phy_saved_data, speed, duplex, i;
|
|
|
- u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
|
|
|
- {IGP01E1000_PHY_AGC_PARAM_A,
|
|
|
- IGP01E1000_PHY_AGC_PARAM_B,
|
|
|
- IGP01E1000_PHY_AGC_PARAM_C,
|
|
|
- IGP01E1000_PHY_AGC_PARAM_D};
|
|
|
- u16 min_length, max_length;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_config_dsp_after_link_change");
|
|
|
-
|
|
|
- if (hw->phy_type != e1000_phy_igp)
|
|
|
- return E1000_SUCCESS;
|
|
|
-
|
|
|
- if (link_up) {
|
|
|
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
- if (ret_val) {
|
|
|
- DEBUGOUT("Error getting link speed and duplex\n");
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- if (speed == SPEED_1000) {
|
|
|
-
|
|
|
- ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
|
|
|
- min_length >= e1000_igp_cable_length_50) {
|
|
|
-
|
|
|
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
|
|
|
- phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
- hw->dsp_config_state = e1000_dsp_config_activated;
|
|
|
- }
|
|
|
-
|
|
|
- if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
|
|
|
- (min_length < e1000_igp_cable_length_50)) {
|
|
|
-
|
|
|
- u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
|
|
|
- u32 idle_errs = 0;
|
|
|
-
|
|
|
- /* clear previous idle error counts */
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- for (i = 0; i < ffe_idle_err_timeout; i++) {
|
|
|
- udelay(1000);
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
|
|
|
- if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
|
|
|
- hw->ffe_config_state = e1000_ffe_config_active;
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw,
|
|
|
- IGP01E1000_PHY_DSP_FFE,
|
|
|
- IGP01E1000_PHY_DSP_FFE_CM_CP);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- if (idle_errs)
|
|
|
- ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- if (hw->dsp_config_state == e1000_dsp_config_activated) {
|
|
|
- /* Save off the current value of register 0x2F5B to be restored at
|
|
|
- * the end of the routines. */
|
|
|
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
-
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Disable the PHY transmitter */
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
|
|
|
-
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- mdelay(20);
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
- IGP01E1000_IEEE_FORCE_GIGA);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
|
|
|
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
- IGP01E1000_IEEE_RESTART_AUTONEG);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- mdelay(20);
|
|
|
-
|
|
|
- /* Now enable the transmitter */
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
-
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
|
- }
|
|
|
-
|
|
|
- if (hw->ffe_config_state == e1000_ffe_config_active) {
|
|
|
- /* Save off the current value of register 0x2F5B to be restored at
|
|
|
- * the end of the routines. */
|
|
|
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
-
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* Disable the PHY transmitter */
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
|
|
|
-
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- mdelay(20);
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
- IGP01E1000_IEEE_FORCE_GIGA);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
|
|
|
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
- IGP01E1000_IEEE_RESTART_AUTONEG);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- mdelay(20);
|
|
|
-
|
|
|
- /* Now enable the transmitter */
|
|
|
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
-
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- hw->ffe_config_state = e1000_ffe_config_enabled;
|
|
|
- }
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data, phy_saved_data, speed, duplex, i;
|
|
|
+ u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
|
|
|
+ { IGP01E1000_PHY_AGC_PARAM_A,
|
|
|
+ IGP01E1000_PHY_AGC_PARAM_B,
|
|
|
+ IGP01E1000_PHY_AGC_PARAM_C,
|
|
|
+ IGP01E1000_PHY_AGC_PARAM_D
|
|
|
+ };
|
|
|
+ u16 min_length, max_length;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_config_dsp_after_link_change");
|
|
|
+
|
|
|
+ if (hw->phy_type != e1000_phy_igp)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ if (link_up) {
|
|
|
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
+ if (ret_val) {
|
|
|
+ DEBUGOUT("Error getting link speed and duplex\n");
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (speed == SPEED_1000) {
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_get_cable_length(hw, &min_length,
|
|
|
+ &max_length);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if ((hw->dsp_config_state == e1000_dsp_config_enabled)
|
|
|
+ && min_length >= e1000_igp_cable_length_50) {
|
|
|
+
|
|
|
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw,
|
|
|
+ dsp_reg_array[i],
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data &=
|
|
|
+ ~IGP01E1000_PHY_EDAC_MU_INDEX;
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw,
|
|
|
+ dsp_reg_array
|
|
|
+ [i], phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ hw->dsp_config_state =
|
|
|
+ e1000_dsp_config_activated;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((hw->ffe_config_state == e1000_ffe_config_enabled)
|
|
|
+ && (min_length < e1000_igp_cable_length_50)) {
|
|
|
+
|
|
|
+ u16 ffe_idle_err_timeout =
|
|
|
+ FFE_IDLE_ERR_COUNT_TIMEOUT_20;
|
|
|
+ u32 idle_errs = 0;
|
|
|
+
|
|
|
+ /* clear previous idle error counts */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, PHY_1000T_STATUS,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
|
|
|
+ udelay(1000);
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw,
|
|
|
+ PHY_1000T_STATUS,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ idle_errs +=
|
|
|
+ (phy_data &
|
|
|
+ SR_1000T_IDLE_ERROR_CNT);
|
|
|
+ if (idle_errs >
|
|
|
+ SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
|
|
|
+ {
|
|
|
+ hw->ffe_config_state =
|
|
|
+ e1000_ffe_config_active;
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw,
|
|
|
+ IGP01E1000_PHY_DSP_FFE,
|
|
|
+ IGP01E1000_PHY_DSP_FFE_CM_CP);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (idle_errs)
|
|
|
+ ffe_idle_err_timeout =
|
|
|
+ FFE_IDLE_ERR_COUNT_TIMEOUT_100;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ if (hw->dsp_config_state == e1000_dsp_config_activated) {
|
|
|
+ /* Save off the current value of register 0x2F5B to be restored at
|
|
|
+ * the end of the routines. */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Disable the PHY transmitter */
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ mdelay(20);
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
+ IGP01E1000_IEEE_FORCE_GIGA);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, dsp_reg_array[i],
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
|
|
|
+ phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
|
|
|
+
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, dsp_reg_array[i],
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
+ IGP01E1000_IEEE_RESTART_AUTONEG);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ mdelay(20);
|
|
|
+
|
|
|
+ /* Now enable the transmitter */
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hw->ffe_config_state == e1000_ffe_config_active) {
|
|
|
+ /* Save off the current value of register 0x2F5B to be restored at
|
|
|
+ * the end of the routines. */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* Disable the PHY transmitter */
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ mdelay(20);
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
+ IGP01E1000_IEEE_FORCE_GIGA);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
|
|
|
+ IGP01E1000_PHY_DSP_FFE_DEFAULT);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, 0x0000,
|
|
|
+ IGP01E1000_IEEE_RESTART_AUTONEG);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ mdelay(20);
|
|
|
+
|
|
|
+ /* Now enable the transmitter */
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
+
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ hw->ffe_config_state = e1000_ffe_config_enabled;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/*****************************************************************************
|
|
|
- * Set PHY to class A mode
|
|
|
+/**
|
|
|
+ * e1000_set_phy_mode - Set PHY to class A mode
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ *
|
|
|
* Assumes the following operations will follow to enable the new class mode.
|
|
|
* 1. Do a PHY soft reset
|
|
|
* 2. Restart auto-negotiation or force link.
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- ****************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_set_phy_mode(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 eeprom_data;
|
|
|
-
|
|
|
- DEBUGFUNC("e1000_set_phy_mode");
|
|
|
-
|
|
|
- if ((hw->mac_type == e1000_82545_rev_3) &&
|
|
|
- (hw->media_type == e1000_media_type_copper)) {
|
|
|
- ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
|
|
|
- if (ret_val) {
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
|
|
|
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- hw->phy_reset_disable = false;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 eeprom_data;
|
|
|
+
|
|
|
+ DEBUGFUNC("e1000_set_phy_mode");
|
|
|
+
|
|
|
+ if ((hw->mac_type == e1000_82545_rev_3) &&
|
|
|
+ (hw->media_type == e1000_media_type_copper)) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
|
|
|
+ &eeprom_data);
|
|
|
+ if (ret_val) {
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((eeprom_data != EEPROM_RESERVED_WORD) &&
|
|
|
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
|
|
|
+ 0x000B);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
|
|
|
+ 0x8104);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ hw->phy_reset_disable = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/*****************************************************************************
|
|
|
+/**
|
|
|
+ * e1000_set_d3_lplu_state - set d3 link power state
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
+ * @active: true to enable lplu false to disable lplu.
|
|
|
*
|
|
|
* This function sets the lplu state according to the active flag. When
|
|
|
* activating lplu this function also disables smart speed and vise versa.
|
|
|
- * lplu will not be activated unless the device autonegotiation advertisment
|
|
|
+ * lplu will not be activated unless the device autonegotiation advertisement
|
|
|
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
|
- * hw: Struct containing variables accessed by shared code
|
|
|
- * active - true to enable lplu false to disable lplu.
|
|
|
*
|
|
|
* returns: - E1000_ERR_PHY if fail to read/write the PHY
|
|
|
* E1000_SUCCESS at any other case.
|
|
|
- *
|
|
|
- ****************************************************************************/
|
|
|
-
|
|
|
+ */
|
|
|
static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 phy_data;
|
|
|
- DEBUGFUNC("e1000_set_d3_lplu_state");
|
|
|
-
|
|
|
- if (hw->phy_type != e1000_phy_igp)
|
|
|
- return E1000_SUCCESS;
|
|
|
-
|
|
|
- /* During driver activity LPLU should not be used or it will attain link
|
|
|
- * from the lowest speeds starting from 10Mbps. The capability is used for
|
|
|
- * Dx transitions and states */
|
|
|
- if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- } else {
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- if (!active) {
|
|
|
- if (hw->mac_type == e1000_82541_rev_2 ||
|
|
|
- hw->mac_type == e1000_82547_rev_2) {
|
|
|
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- } else {
|
|
|
- phy_data &= ~IGP02E1000_PM_D3_LPLU;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
|
- phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
|
|
|
- * Dx states where the power conservation is most important. During
|
|
|
- * driver activity we should enable SmartSpeed, so performance is
|
|
|
- * maintained. */
|
|
|
- if (hw->smart_speed == e1000_smart_speed_on) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
- phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- } else if (hw->smart_speed == e1000_smart_speed_off) {
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
- &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
- phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
|
|
|
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
|
|
|
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
|
|
|
-
|
|
|
- if (hw->mac_type == e1000_82541_rev_2 ||
|
|
|
- hw->mac_type == e1000_82547_rev_2) {
|
|
|
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- } else {
|
|
|
- phy_data |= IGP02E1000_PM_D3_LPLU;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
|
- phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- }
|
|
|
-
|
|
|
- /* When LPLU is enabled we should disable SmartSpeed */
|
|
|
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 phy_data;
|
|
|
+ DEBUGFUNC("e1000_set_d3_lplu_state");
|
|
|
+
|
|
|
+ if (hw->phy_type != e1000_phy_igp)
|
|
|
+ return E1000_SUCCESS;
|
|
|
+
|
|
|
+ /* During driver activity LPLU should not be used or it will attain link
|
|
|
+ * from the lowest speeds starting from 10Mbps. The capability is used for
|
|
|
+ * Dx transitions and states */
|
|
|
+ if (hw->mac_type == e1000_82541_rev_2
|
|
|
+ || hw->mac_type == e1000_82547_rev_2) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!active) {
|
|
|
+ if (hw->mac_type == e1000_82541_rev_2 ||
|
|
|
+ hw->mac_type == e1000_82547_rev_2) {
|
|
|
+ phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
|
|
|
+ * Dx states where the power conservation is most important. During
|
|
|
+ * driver activity we should enable SmartSpeed, so performance is
|
|
|
+ * maintained. */
|
|
|
+ if (hw->smart_speed == e1000_smart_speed_on) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ } else if (hw->smart_speed == e1000_smart_speed_off) {
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+ } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
|
|
|
+ || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
|
|
|
+ || (hw->autoneg_advertised ==
|
|
|
+ AUTONEG_ADVERTISE_10_100_ALL)) {
|
|
|
+
|
|
|
+ if (hw->mac_type == e1000_82541_rev_2 ||
|
|
|
+ hw->mac_type == e1000_82547_rev_2) {
|
|
|
+ phy_data |= IGP01E1000_GMII_FLEX_SPD;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* When LPLU is enabled we should disable SmartSpeed */
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
|
+ phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
|
|
|
+/**
|
|
|
+ * e1000_set_vco_speed
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
- *****************************************************************************/
|
|
|
+ * Change VCO speed register to improve Bit Error Rate performance of SERDES.
|
|
|
+ */
|
|
|
static s32 e1000_set_vco_speed(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 default_page = 0;
|
|
|
- u16 phy_data;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 default_page = 0;
|
|
|
+ u16 phy_data;
|
|
|
|
|
|
- DEBUGFUNC("e1000_set_vco_speed");
|
|
|
+ DEBUGFUNC("e1000_set_vco_speed");
|
|
|
|
|
|
- switch (hw->mac_type) {
|
|
|
- case e1000_82545_rev_3:
|
|
|
- case e1000_82546_rev_3:
|
|
|
- break;
|
|
|
- default:
|
|
|
- return E1000_SUCCESS;
|
|
|
- }
|
|
|
+ switch (hw->mac_type) {
|
|
|
+ case e1000_82545_rev_3:
|
|
|
+ case e1000_82546_rev_3:
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ return E1000_SUCCESS;
|
|
|
+ }
|
|
|
|
|
|
- /* Set PHY register 30, page 5, bit 8 to 0 */
|
|
|
+ /* Set PHY register 30, page 5, bit 8 to 0 */
|
|
|
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ ret_val =
|
|
|
+ e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- /* Set PHY register 30, page 4, bit 11 to 1 */
|
|
|
+ /* Set PHY register 30, page 4, bit 11 to 1 */
|
|
|
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ phy_data |= M88E1000_PHY_VCO_REG_BIT11;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
+ ret_val =
|
|
|
+ e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
|
|
|
- return E1000_SUCCESS;
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
|
|
|
-/******************************************************************************
|
|
|
- * Verifies the hardware needs to allow ARPs to be processed by the host
|
|
|
- *
|
|
|
- * hw - Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_enable_mng_pass_thru - check for bmc pass through
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
+ * Verifies the hardware needs to allow ARPs to be processed by the host
|
|
|
* returns: - true/false
|
|
|
- *
|
|
|
- *****************************************************************************/
|
|
|
+ */
|
|
|
u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
|
|
|
{
|
|
|
- u32 manc;
|
|
|
-
|
|
|
- if (hw->asf_firmware_present) {
|
|
|
- manc = er32(MANC);
|
|
|
-
|
|
|
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
|
|
|
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
|
|
|
- return false;
|
|
|
- if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
|
|
|
- return true;
|
|
|
- }
|
|
|
- return false;
|
|
|
+ u32 manc;
|
|
|
+
|
|
|
+ if (hw->asf_firmware_present) {
|
|
|
+ manc = er32(MANC);
|
|
|
+
|
|
|
+ if (!(manc & E1000_MANC_RCV_TCO_EN) ||
|
|
|
+ !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
|
|
|
+ return false;
|
|
|
+ if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ return false;
|
|
|
}
|
|
|
|
|
|
static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
|
|
|
{
|
|
|
- s32 ret_val;
|
|
|
- u16 mii_status_reg;
|
|
|
- u16 i;
|
|
|
-
|
|
|
- /* Polarity reversal workaround for forced 10F/10H links. */
|
|
|
-
|
|
|
- /* Disable the transmitter on the PHY */
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* This loop will early-out if the NO link condition has been met. */
|
|
|
- for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
- /* Read the MII Status Register and wait for Link Status bit
|
|
|
- * to be clear.
|
|
|
- */
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
|
|
|
- mdelay(100);
|
|
|
- }
|
|
|
-
|
|
|
- /* Recommended delay time after link has been lost */
|
|
|
- mdelay(1000);
|
|
|
-
|
|
|
- /* Now we will re-enable th transmitter on the PHY */
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- mdelay(50);
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- mdelay(50);
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
- mdelay(50);
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- /* This loop will early-out if the link condition has been met. */
|
|
|
- for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
- /* Read the MII Status Register and wait for Link Status bit
|
|
|
- * to be set.
|
|
|
- */
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
- if (ret_val)
|
|
|
- return ret_val;
|
|
|
-
|
|
|
- if (mii_status_reg & MII_SR_LINK_STATUS) break;
|
|
|
- mdelay(100);
|
|
|
- }
|
|
|
- return E1000_SUCCESS;
|
|
|
+ s32 ret_val;
|
|
|
+ u16 mii_status_reg;
|
|
|
+ u16 i;
|
|
|
+
|
|
|
+ /* Polarity reversal workaround for forced 10F/10H links. */
|
|
|
+
|
|
|
+ /* Disable the transmitter on the PHY */
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* This loop will early-out if the NO link condition has been met. */
|
|
|
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
+ /* Read the MII Status Register and wait for Link Status bit
|
|
|
+ * to be clear.
|
|
|
+ */
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
|
|
|
+ break;
|
|
|
+ mdelay(100);
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Recommended delay time after link has been lost */
|
|
|
+ mdelay(1000);
|
|
|
+
|
|
|
+ /* Now we will re-enable th transmitter on the PHY */
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ mdelay(50);
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ mdelay(50);
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+ mdelay(50);
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ /* This loop will early-out if the link condition has been met. */
|
|
|
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
|
|
|
+ /* Read the MII Status Register and wait for Link Status bit
|
|
|
+ * to be set.
|
|
|
+ */
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
|
+ if (ret_val)
|
|
|
+ return ret_val;
|
|
|
+
|
|
|
+ if (mii_status_reg & MII_SR_LINK_STATUS)
|
|
|
+ break;
|
|
|
+ mdelay(100);
|
|
|
+ }
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/*******************************************************************************
|
|
|
+/**
|
|
|
+ * e1000_get_auto_rd_done
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
* Check for EEPROM Auto Read bit done.
|
|
|
- *
|
|
|
- * hw: Struct containing variables accessed by shared code
|
|
|
- *
|
|
|
* returns: - E1000_ERR_RESET if fail to reset MAC
|
|
|
* E1000_SUCCESS at any other case.
|
|
|
- *
|
|
|
- ******************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
|
|
|
{
|
|
|
- DEBUGFUNC("e1000_get_auto_rd_done");
|
|
|
- msleep(5);
|
|
|
- return E1000_SUCCESS;
|
|
|
+ DEBUGFUNC("e1000_get_auto_rd_done");
|
|
|
+ msleep(5);
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|
|
|
|
|
|
-/***************************************************************************
|
|
|
- * Checks if the PHY configuration is done
|
|
|
- *
|
|
|
- * hw: Struct containing variables accessed by shared code
|
|
|
+/**
|
|
|
+ * e1000_get_phy_cfg_done
|
|
|
+ * @hw: Struct containing variables accessed by shared code
|
|
|
*
|
|
|
+ * Checks if the PHY configuration is done
|
|
|
* returns: - E1000_ERR_RESET if fail to reset MAC
|
|
|
* E1000_SUCCESS at any other case.
|
|
|
- *
|
|
|
- ***************************************************************************/
|
|
|
+ */
|
|
|
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
|
|
|
{
|
|
|
- DEBUGFUNC("e1000_get_phy_cfg_done");
|
|
|
- mdelay(10);
|
|
|
- return E1000_SUCCESS;
|
|
|
+ DEBUGFUNC("e1000_get_phy_cfg_done");
|
|
|
+ mdelay(10);
|
|
|
+ return E1000_SUCCESS;
|
|
|
}
|