|
@@ -1,1068 +1,369 @@
|
|
|
-/*
|
|
|
- * 2002-10-18 written by Jim Houston jim.houston@ccur.com
|
|
|
- * Copyright (C) 2002 by Concurrent Computer Corporation
|
|
|
- * Distributed under the GNU GPL license version 2.
|
|
|
- *
|
|
|
- * Modified by George Anzinger to reuse immediately and to use
|
|
|
- * find bit instructions. Also removed _irq on spinlocks.
|
|
|
- *
|
|
|
- * Modified by Nadia Derbey to make it RCU safe.
|
|
|
- *
|
|
|
- * Small id to pointer translation service.
|
|
|
- *
|
|
|
- * It uses a radix tree like structure as a sparse array indexed
|
|
|
- * by the id to obtain the pointer. The bitmap makes allocating
|
|
|
- * a new id quick.
|
|
|
- *
|
|
|
- * You call it to allocate an id (an int) an associate with that id a
|
|
|
- * pointer or what ever, we treat it as a (void *). You can pass this
|
|
|
- * id to a user for him to pass back at a later time. You then pass
|
|
|
- * that id to this code and it returns your pointer.
|
|
|
- */
|
|
|
-
|
|
|
-#ifndef TEST // to test in user space...
|
|
|
-#include <linux/slab.h>
|
|
|
-#include <linux/init.h>
|
|
|
+#include <linux/bitmap.h>
|
|
|
#include <linux/export.h>
|
|
|
-#endif
|
|
|
-#include <linux/err.h>
|
|
|
-#include <linux/string.h>
|
|
|
#include <linux/idr.h>
|
|
|
+#include <linux/slab.h>
|
|
|
#include <linux/spinlock.h>
|
|
|
-#include <linux/percpu.h>
|
|
|
|
|
|
-#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
|
|
|
-#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
|
|
|
-
|
|
|
-/* Leave the possibility of an incomplete final layer */
|
|
|
-#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
|
|
|
-
|
|
|
-/* Number of id_layer structs to leave in free list */
|
|
|
-#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
|
|
|
-
|
|
|
-static struct kmem_cache *idr_layer_cache;
|
|
|
-static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
|
|
|
-static DEFINE_PER_CPU(int, idr_preload_cnt);
|
|
|
static DEFINE_SPINLOCK(simple_ida_lock);
|
|
|
|
|
|
-/* the maximum ID which can be allocated given idr->layers */
|
|
|
-static int idr_max(int layers)
|
|
|
-{
|
|
|
- int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
|
|
|
-
|
|
|
- return (1 << bits) - 1;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
|
|
|
- * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
|
|
|
- * so on.
|
|
|
- */
|
|
|
-static int idr_layer_prefix_mask(int layer)
|
|
|
-{
|
|
|
- return ~idr_max(layer + 1);
|
|
|
-}
|
|
|
-
|
|
|
-static struct idr_layer *get_from_free_list(struct idr *idp)
|
|
|
-{
|
|
|
- struct idr_layer *p;
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- spin_lock_irqsave(&idp->lock, flags);
|
|
|
- if ((p = idp->id_free)) {
|
|
|
- idp->id_free = p->ary[0];
|
|
|
- idp->id_free_cnt--;
|
|
|
- p->ary[0] = NULL;
|
|
|
- }
|
|
|
- spin_unlock_irqrestore(&idp->lock, flags);
|
|
|
- return(p);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * idr_layer_alloc - allocate a new idr_layer
|
|
|
- * @gfp_mask: allocation mask
|
|
|
- * @layer_idr: optional idr to allocate from
|
|
|
- *
|
|
|
- * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
|
|
|
- * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
|
|
|
- * an idr_layer from @idr->id_free.
|
|
|
- *
|
|
|
- * @layer_idr is to maintain backward compatibility with the old alloc
|
|
|
- * interface - idr_pre_get() and idr_get_new*() - and will be removed
|
|
|
- * together with per-pool preload buffer.
|
|
|
- */
|
|
|
-static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
|
|
|
-{
|
|
|
- struct idr_layer *new;
|
|
|
-
|
|
|
- /* this is the old path, bypass to get_from_free_list() */
|
|
|
- if (layer_idr)
|
|
|
- return get_from_free_list(layer_idr);
|
|
|
-
|
|
|
- /*
|
|
|
- * Try to allocate directly from kmem_cache. We want to try this
|
|
|
- * before preload buffer; otherwise, non-preloading idr_alloc()
|
|
|
- * users will end up taking advantage of preloading ones. As the
|
|
|
- * following is allowed to fail for preloaded cases, suppress
|
|
|
- * warning this time.
|
|
|
- */
|
|
|
- new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN);
|
|
|
- if (new)
|
|
|
- return new;
|
|
|
-
|
|
|
- /*
|
|
|
- * Try to fetch one from the per-cpu preload buffer if in process
|
|
|
- * context. See idr_preload() for details.
|
|
|
- */
|
|
|
- if (!in_interrupt()) {
|
|
|
- preempt_disable();
|
|
|
- new = __this_cpu_read(idr_preload_head);
|
|
|
- if (new) {
|
|
|
- __this_cpu_write(idr_preload_head, new->ary[0]);
|
|
|
- __this_cpu_dec(idr_preload_cnt);
|
|
|
- new->ary[0] = NULL;
|
|
|
- }
|
|
|
- preempt_enable();
|
|
|
- if (new)
|
|
|
- return new;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so
|
|
|
- * that memory allocation failure warning is printed as intended.
|
|
|
- */
|
|
|
- return kmem_cache_zalloc(idr_layer_cache, gfp_mask);
|
|
|
-}
|
|
|
-
|
|
|
-static void idr_layer_rcu_free(struct rcu_head *head)
|
|
|
-{
|
|
|
- struct idr_layer *layer;
|
|
|
-
|
|
|
- layer = container_of(head, struct idr_layer, rcu_head);
|
|
|
- kmem_cache_free(idr_layer_cache, layer);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void free_layer(struct idr *idr, struct idr_layer *p)
|
|
|
-{
|
|
|
- if (idr->hint == p)
|
|
|
- RCU_INIT_POINTER(idr->hint, NULL);
|
|
|
- call_rcu(&p->rcu_head, idr_layer_rcu_free);
|
|
|
-}
|
|
|
-
|
|
|
-/* only called when idp->lock is held */
|
|
|
-static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
|
|
|
-{
|
|
|
- p->ary[0] = idp->id_free;
|
|
|
- idp->id_free = p;
|
|
|
- idp->id_free_cnt++;
|
|
|
-}
|
|
|
-
|
|
|
-static void move_to_free_list(struct idr *idp, struct idr_layer *p)
|
|
|
-{
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- /*
|
|
|
- * Depends on the return element being zeroed.
|
|
|
- */
|
|
|
- spin_lock_irqsave(&idp->lock, flags);
|
|
|
- __move_to_free_list(idp, p);
|
|
|
- spin_unlock_irqrestore(&idp->lock, flags);
|
|
|
-}
|
|
|
-
|
|
|
-static void idr_mark_full(struct idr_layer **pa, int id)
|
|
|
-{
|
|
|
- struct idr_layer *p = pa[0];
|
|
|
- int l = 0;
|
|
|
-
|
|
|
- __set_bit(id & IDR_MASK, p->bitmap);
|
|
|
- /*
|
|
|
- * If this layer is full mark the bit in the layer above to
|
|
|
- * show that this part of the radix tree is full. This may
|
|
|
- * complete the layer above and require walking up the radix
|
|
|
- * tree.
|
|
|
- */
|
|
|
- while (bitmap_full(p->bitmap, IDR_SIZE)) {
|
|
|
- if (!(p = pa[++l]))
|
|
|
- break;
|
|
|
- id = id >> IDR_BITS;
|
|
|
- __set_bit((id & IDR_MASK), p->bitmap);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask)
|
|
|
-{
|
|
|
- while (idp->id_free_cnt < MAX_IDR_FREE) {
|
|
|
- struct idr_layer *new;
|
|
|
- new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
|
|
|
- if (new == NULL)
|
|
|
- return (0);
|
|
|
- move_to_free_list(idp, new);
|
|
|
- }
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * sub_alloc - try to allocate an id without growing the tree depth
|
|
|
- * @idp: idr handle
|
|
|
- * @starting_id: id to start search at
|
|
|
- * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
|
|
|
- * @gfp_mask: allocation mask for idr_layer_alloc()
|
|
|
- * @layer_idr: optional idr passed to idr_layer_alloc()
|
|
|
- *
|
|
|
- * Allocate an id in range [@starting_id, INT_MAX] from @idp without
|
|
|
- * growing its depth. Returns
|
|
|
- *
|
|
|
- * the allocated id >= 0 if successful,
|
|
|
- * -EAGAIN if the tree needs to grow for allocation to succeed,
|
|
|
- * -ENOSPC if the id space is exhausted,
|
|
|
- * -ENOMEM if more idr_layers need to be allocated.
|
|
|
- */
|
|
|
-static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
|
|
|
- gfp_t gfp_mask, struct idr *layer_idr)
|
|
|
-{
|
|
|
- int n, m, sh;
|
|
|
- struct idr_layer *p, *new;
|
|
|
- int l, id, oid;
|
|
|
-
|
|
|
- id = *starting_id;
|
|
|
- restart:
|
|
|
- p = idp->top;
|
|
|
- l = idp->layers;
|
|
|
- pa[l--] = NULL;
|
|
|
- while (1) {
|
|
|
- /*
|
|
|
- * We run around this while until we reach the leaf node...
|
|
|
- */
|
|
|
- n = (id >> (IDR_BITS*l)) & IDR_MASK;
|
|
|
- m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
|
|
|
- if (m == IDR_SIZE) {
|
|
|
- /* no space available go back to previous layer. */
|
|
|
- l++;
|
|
|
- oid = id;
|
|
|
- id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
|
|
|
-
|
|
|
- /* if already at the top layer, we need to grow */
|
|
|
- if (id > idr_max(idp->layers)) {
|
|
|
- *starting_id = id;
|
|
|
- return -EAGAIN;
|
|
|
- }
|
|
|
- p = pa[l];
|
|
|
- BUG_ON(!p);
|
|
|
-
|
|
|
- /* If we need to go up one layer, continue the
|
|
|
- * loop; otherwise, restart from the top.
|
|
|
- */
|
|
|
- sh = IDR_BITS * (l + 1);
|
|
|
- if (oid >> sh == id >> sh)
|
|
|
- continue;
|
|
|
- else
|
|
|
- goto restart;
|
|
|
- }
|
|
|
- if (m != n) {
|
|
|
- sh = IDR_BITS*l;
|
|
|
- id = ((id >> sh) ^ n ^ m) << sh;
|
|
|
- }
|
|
|
- if ((id >= MAX_IDR_BIT) || (id < 0))
|
|
|
- return -ENOSPC;
|
|
|
- if (l == 0)
|
|
|
- break;
|
|
|
- /*
|
|
|
- * Create the layer below if it is missing.
|
|
|
- */
|
|
|
- if (!p->ary[m]) {
|
|
|
- new = idr_layer_alloc(gfp_mask, layer_idr);
|
|
|
- if (!new)
|
|
|
- return -ENOMEM;
|
|
|
- new->layer = l-1;
|
|
|
- new->prefix = id & idr_layer_prefix_mask(new->layer);
|
|
|
- rcu_assign_pointer(p->ary[m], new);
|
|
|
- p->count++;
|
|
|
- }
|
|
|
- pa[l--] = p;
|
|
|
- p = p->ary[m];
|
|
|
- }
|
|
|
-
|
|
|
- pa[l] = p;
|
|
|
- return id;
|
|
|
-}
|
|
|
-
|
|
|
-static int idr_get_empty_slot(struct idr *idp, int starting_id,
|
|
|
- struct idr_layer **pa, gfp_t gfp_mask,
|
|
|
- struct idr *layer_idr)
|
|
|
-{
|
|
|
- struct idr_layer *p, *new;
|
|
|
- int layers, v, id;
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- id = starting_id;
|
|
|
-build_up:
|
|
|
- p = idp->top;
|
|
|
- layers = idp->layers;
|
|
|
- if (unlikely(!p)) {
|
|
|
- if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
|
|
|
- return -ENOMEM;
|
|
|
- p->layer = 0;
|
|
|
- layers = 1;
|
|
|
- }
|
|
|
- /*
|
|
|
- * Add a new layer to the top of the tree if the requested
|
|
|
- * id is larger than the currently allocated space.
|
|
|
- */
|
|
|
- while (id > idr_max(layers)) {
|
|
|
- layers++;
|
|
|
- if (!p->count) {
|
|
|
- /* special case: if the tree is currently empty,
|
|
|
- * then we grow the tree by moving the top node
|
|
|
- * upwards.
|
|
|
- */
|
|
|
- p->layer++;
|
|
|
- WARN_ON_ONCE(p->prefix);
|
|
|
- continue;
|
|
|
- }
|
|
|
- if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
|
|
|
- /*
|
|
|
- * The allocation failed. If we built part of
|
|
|
- * the structure tear it down.
|
|
|
- */
|
|
|
- spin_lock_irqsave(&idp->lock, flags);
|
|
|
- for (new = p; p && p != idp->top; new = p) {
|
|
|
- p = p->ary[0];
|
|
|
- new->ary[0] = NULL;
|
|
|
- new->count = 0;
|
|
|
- bitmap_clear(new->bitmap, 0, IDR_SIZE);
|
|
|
- __move_to_free_list(idp, new);
|
|
|
- }
|
|
|
- spin_unlock_irqrestore(&idp->lock, flags);
|
|
|
- return -ENOMEM;
|
|
|
- }
|
|
|
- new->ary[0] = p;
|
|
|
- new->count = 1;
|
|
|
- new->layer = layers-1;
|
|
|
- new->prefix = id & idr_layer_prefix_mask(new->layer);
|
|
|
- if (bitmap_full(p->bitmap, IDR_SIZE))
|
|
|
- __set_bit(0, new->bitmap);
|
|
|
- p = new;
|
|
|
- }
|
|
|
- rcu_assign_pointer(idp->top, p);
|
|
|
- idp->layers = layers;
|
|
|
- v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
|
|
|
- if (v == -EAGAIN)
|
|
|
- goto build_up;
|
|
|
- return(v);
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * @id and @pa are from a successful allocation from idr_get_empty_slot().
|
|
|
- * Install the user pointer @ptr and mark the slot full.
|
|
|
- */
|
|
|
-static void idr_fill_slot(struct idr *idr, void *ptr, int id,
|
|
|
- struct idr_layer **pa)
|
|
|
-{
|
|
|
- /* update hint used for lookup, cleared from free_layer() */
|
|
|
- rcu_assign_pointer(idr->hint, pa[0]);
|
|
|
-
|
|
|
- rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
|
|
|
- pa[0]->count++;
|
|
|
- idr_mark_full(pa, id);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-/**
|
|
|
- * idr_preload - preload for idr_alloc()
|
|
|
- * @gfp_mask: allocation mask to use for preloading
|
|
|
- *
|
|
|
- * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
|
|
|
- * process context and each idr_preload() invocation should be matched with
|
|
|
- * idr_preload_end(). Note that preemption is disabled while preloaded.
|
|
|
- *
|
|
|
- * The first idr_alloc() in the preloaded section can be treated as if it
|
|
|
- * were invoked with @gfp_mask used for preloading. This allows using more
|
|
|
- * permissive allocation masks for idrs protected by spinlocks.
|
|
|
- *
|
|
|
- * For example, if idr_alloc() below fails, the failure can be treated as
|
|
|
- * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
|
|
|
- *
|
|
|
- * idr_preload(GFP_KERNEL);
|
|
|
- * spin_lock(lock);
|
|
|
- *
|
|
|
- * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
|
|
|
- *
|
|
|
- * spin_unlock(lock);
|
|
|
- * idr_preload_end();
|
|
|
- * if (id < 0)
|
|
|
- * error;
|
|
|
- */
|
|
|
-void idr_preload(gfp_t gfp_mask)
|
|
|
-{
|
|
|
- /*
|
|
|
- * Consuming preload buffer from non-process context breaks preload
|
|
|
- * allocation guarantee. Disallow usage from those contexts.
|
|
|
- */
|
|
|
- WARN_ON_ONCE(in_interrupt());
|
|
|
- might_sleep_if(gfpflags_allow_blocking(gfp_mask));
|
|
|
-
|
|
|
- preempt_disable();
|
|
|
-
|
|
|
- /*
|
|
|
- * idr_alloc() is likely to succeed w/o full idr_layer buffer and
|
|
|
- * return value from idr_alloc() needs to be checked for failure
|
|
|
- * anyway. Silently give up if allocation fails. The caller can
|
|
|
- * treat failures from idr_alloc() as if idr_alloc() were called
|
|
|
- * with @gfp_mask which should be enough.
|
|
|
- */
|
|
|
- while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
|
|
|
- struct idr_layer *new;
|
|
|
-
|
|
|
- preempt_enable();
|
|
|
- new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
|
|
|
- preempt_disable();
|
|
|
- if (!new)
|
|
|
- break;
|
|
|
-
|
|
|
- /* link the new one to per-cpu preload list */
|
|
|
- new->ary[0] = __this_cpu_read(idr_preload_head);
|
|
|
- __this_cpu_write(idr_preload_head, new);
|
|
|
- __this_cpu_inc(idr_preload_cnt);
|
|
|
- }
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(idr_preload);
|
|
|
-
|
|
|
/**
|
|
|
- * idr_alloc - allocate new idr entry
|
|
|
- * @idr: the (initialized) idr
|
|
|
+ * idr_alloc - allocate an id
|
|
|
+ * @idr: idr handle
|
|
|
* @ptr: pointer to be associated with the new id
|
|
|
* @start: the minimum id (inclusive)
|
|
|
- * @end: the maximum id (exclusive, <= 0 for max)
|
|
|
- * @gfp_mask: memory allocation flags
|
|
|
+ * @end: the maximum id (exclusive)
|
|
|
+ * @gfp: memory allocation flags
|
|
|
*
|
|
|
- * Allocate an id in [start, end) and associate it with @ptr. If no ID is
|
|
|
- * available in the specified range, returns -ENOSPC. On memory allocation
|
|
|
- * failure, returns -ENOMEM.
|
|
|
+ * Allocates an unused ID in the range [start, end). Returns -ENOSPC
|
|
|
+ * if there are no unused IDs in that range.
|
|
|
*
|
|
|
* Note that @end is treated as max when <= 0. This is to always allow
|
|
|
* using @start + N as @end as long as N is inside integer range.
|
|
|
*
|
|
|
- * The user is responsible for exclusively synchronizing all operations
|
|
|
- * which may modify @idr. However, read-only accesses such as idr_find()
|
|
|
- * or iteration can be performed under RCU read lock provided the user
|
|
|
- * destroys @ptr in RCU-safe way after removal from idr.
|
|
|
+ * Simultaneous modifications to the @idr are not allowed and should be
|
|
|
+ * prevented by the user, usually with a lock. idr_alloc() may be called
|
|
|
+ * concurrently with read-only accesses to the @idr, such as idr_find() and
|
|
|
+ * idr_for_each_entry().
|
|
|
*/
|
|
|
-int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
|
|
|
+int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
|
|
|
{
|
|
|
- int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
|
|
|
- struct idr_layer *pa[MAX_IDR_LEVEL + 1];
|
|
|
- int id;
|
|
|
-
|
|
|
- might_sleep_if(gfpflags_allow_blocking(gfp_mask));
|
|
|
+ void **slot;
|
|
|
+ struct radix_tree_iter iter;
|
|
|
|
|
|
- /* sanity checks */
|
|
|
if (WARN_ON_ONCE(start < 0))
|
|
|
return -EINVAL;
|
|
|
- if (unlikely(max < start))
|
|
|
- return -ENOSPC;
|
|
|
+ if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
|
|
|
+ return -EINVAL;
|
|
|
|
|
|
- /* allocate id */
|
|
|
- id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
|
|
|
- if (unlikely(id < 0))
|
|
|
- return id;
|
|
|
- if (unlikely(id > max))
|
|
|
- return -ENOSPC;
|
|
|
+ radix_tree_iter_init(&iter, start);
|
|
|
+ slot = idr_get_free(&idr->idr_rt, &iter, gfp, end);
|
|
|
+ if (IS_ERR(slot))
|
|
|
+ return PTR_ERR(slot);
|
|
|
|
|
|
- idr_fill_slot(idr, ptr, id, pa);
|
|
|
- return id;
|
|
|
+ radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
|
|
|
+ radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
|
|
|
+ return iter.index;
|
|
|
}
|
|
|
EXPORT_SYMBOL_GPL(idr_alloc);
|
|
|
|
|
|
/**
|
|
|
* idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
|
|
|
- * @idr: the (initialized) idr
|
|
|
+ * @idr: idr handle
|
|
|
* @ptr: pointer to be associated with the new id
|
|
|
* @start: the minimum id (inclusive)
|
|
|
- * @end: the maximum id (exclusive, <= 0 for max)
|
|
|
- * @gfp_mask: memory allocation flags
|
|
|
- *
|
|
|
- * Essentially the same as idr_alloc, but prefers to allocate progressively
|
|
|
- * higher ids if it can. If the "cur" counter wraps, then it will start again
|
|
|
- * at the "start" end of the range and allocate one that has already been used.
|
|
|
- */
|
|
|
-int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end,
|
|
|
- gfp_t gfp_mask)
|
|
|
-{
|
|
|
- int id;
|
|
|
-
|
|
|
- id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask);
|
|
|
- if (id == -ENOSPC)
|
|
|
- id = idr_alloc(idr, ptr, start, end, gfp_mask);
|
|
|
-
|
|
|
- if (likely(id >= 0))
|
|
|
- idr->cur = id + 1;
|
|
|
- return id;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(idr_alloc_cyclic);
|
|
|
-
|
|
|
-static void idr_remove_warning(int id)
|
|
|
-{
|
|
|
- WARN(1, "idr_remove called for id=%d which is not allocated.\n", id);
|
|
|
-}
|
|
|
-
|
|
|
-static void sub_remove(struct idr *idp, int shift, int id)
|
|
|
-{
|
|
|
- struct idr_layer *p = idp->top;
|
|
|
- struct idr_layer **pa[MAX_IDR_LEVEL + 1];
|
|
|
- struct idr_layer ***paa = &pa[0];
|
|
|
- struct idr_layer *to_free;
|
|
|
- int n;
|
|
|
-
|
|
|
- *paa = NULL;
|
|
|
- *++paa = &idp->top;
|
|
|
-
|
|
|
- while ((shift > 0) && p) {
|
|
|
- n = (id >> shift) & IDR_MASK;
|
|
|
- __clear_bit(n, p->bitmap);
|
|
|
- *++paa = &p->ary[n];
|
|
|
- p = p->ary[n];
|
|
|
- shift -= IDR_BITS;
|
|
|
- }
|
|
|
- n = id & IDR_MASK;
|
|
|
- if (likely(p != NULL && test_bit(n, p->bitmap))) {
|
|
|
- __clear_bit(n, p->bitmap);
|
|
|
- RCU_INIT_POINTER(p->ary[n], NULL);
|
|
|
- to_free = NULL;
|
|
|
- while(*paa && ! --((**paa)->count)){
|
|
|
- if (to_free)
|
|
|
- free_layer(idp, to_free);
|
|
|
- to_free = **paa;
|
|
|
- **paa-- = NULL;
|
|
|
- }
|
|
|
- if (!*paa)
|
|
|
- idp->layers = 0;
|
|
|
- if (to_free)
|
|
|
- free_layer(idp, to_free);
|
|
|
- } else
|
|
|
- idr_remove_warning(id);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * idr_remove - remove the given id and free its slot
|
|
|
- * @idp: idr handle
|
|
|
- * @id: unique key
|
|
|
- */
|
|
|
-void idr_remove(struct idr *idp, int id)
|
|
|
-{
|
|
|
- struct idr_layer *p;
|
|
|
- struct idr_layer *to_free;
|
|
|
-
|
|
|
- if (id < 0)
|
|
|
- return;
|
|
|
-
|
|
|
- if (id > idr_max(idp->layers)) {
|
|
|
- idr_remove_warning(id);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
|
|
|
- if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
|
|
|
- idp->top->ary[0]) {
|
|
|
- /*
|
|
|
- * Single child at leftmost slot: we can shrink the tree.
|
|
|
- * This level is not needed anymore since when layers are
|
|
|
- * inserted, they are inserted at the top of the existing
|
|
|
- * tree.
|
|
|
- */
|
|
|
- to_free = idp->top;
|
|
|
- p = idp->top->ary[0];
|
|
|
- rcu_assign_pointer(idp->top, p);
|
|
|
- --idp->layers;
|
|
|
- to_free->count = 0;
|
|
|
- bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
|
|
|
- free_layer(idp, to_free);
|
|
|
- }
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(idr_remove);
|
|
|
-
|
|
|
-static void __idr_remove_all(struct idr *idp)
|
|
|
-{
|
|
|
- int n, id, max;
|
|
|
- int bt_mask;
|
|
|
- struct idr_layer *p;
|
|
|
- struct idr_layer *pa[MAX_IDR_LEVEL + 1];
|
|
|
- struct idr_layer **paa = &pa[0];
|
|
|
-
|
|
|
- n = idp->layers * IDR_BITS;
|
|
|
- *paa = idp->top;
|
|
|
- RCU_INIT_POINTER(idp->top, NULL);
|
|
|
- max = idr_max(idp->layers);
|
|
|
-
|
|
|
- id = 0;
|
|
|
- while (id >= 0 && id <= max) {
|
|
|
- p = *paa;
|
|
|
- while (n > IDR_BITS && p) {
|
|
|
- n -= IDR_BITS;
|
|
|
- p = p->ary[(id >> n) & IDR_MASK];
|
|
|
- *++paa = p;
|
|
|
- }
|
|
|
-
|
|
|
- bt_mask = id;
|
|
|
- id += 1 << n;
|
|
|
- /* Get the highest bit that the above add changed from 0->1. */
|
|
|
- while (n < fls(id ^ bt_mask)) {
|
|
|
- if (*paa)
|
|
|
- free_layer(idp, *paa);
|
|
|
- n += IDR_BITS;
|
|
|
- --paa;
|
|
|
- }
|
|
|
- }
|
|
|
- idp->layers = 0;
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * idr_destroy - release all cached layers within an idr tree
|
|
|
- * @idp: idr handle
|
|
|
- *
|
|
|
- * Free all id mappings and all idp_layers. After this function, @idp is
|
|
|
- * completely unused and can be freed / recycled. The caller is
|
|
|
- * responsible for ensuring that no one else accesses @idp during or after
|
|
|
- * idr_destroy().
|
|
|
+ * @end: the maximum id (exclusive)
|
|
|
+ * @gfp: memory allocation flags
|
|
|
*
|
|
|
- * A typical clean-up sequence for objects stored in an idr tree will use
|
|
|
- * idr_for_each() to free all objects, if necessary, then idr_destroy() to
|
|
|
- * free up the id mappings and cached idr_layers.
|
|
|
+ * Allocates an ID larger than the last ID allocated if one is available.
|
|
|
+ * If not, it will attempt to allocate the smallest ID that is larger or
|
|
|
+ * equal to @start.
|
|
|
*/
|
|
|
-void idr_destroy(struct idr *idp)
|
|
|
-{
|
|
|
- __idr_remove_all(idp);
|
|
|
-
|
|
|
- while (idp->id_free_cnt) {
|
|
|
- struct idr_layer *p = get_from_free_list(idp);
|
|
|
- kmem_cache_free(idr_layer_cache, p);
|
|
|
- }
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(idr_destroy);
|
|
|
-
|
|
|
-void *idr_find_slowpath(struct idr *idp, int id)
|
|
|
+int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
|
|
|
{
|
|
|
- int n;
|
|
|
- struct idr_layer *p;
|
|
|
+ int id, curr = idr->idr_next;
|
|
|
|
|
|
- if (id < 0)
|
|
|
- return NULL;
|
|
|
+ if (curr < start)
|
|
|
+ curr = start;
|
|
|
|
|
|
- p = rcu_dereference_raw(idp->top);
|
|
|
- if (!p)
|
|
|
- return NULL;
|
|
|
- n = (p->layer+1) * IDR_BITS;
|
|
|
+ id = idr_alloc(idr, ptr, curr, end, gfp);
|
|
|
+ if ((id == -ENOSPC) && (curr > start))
|
|
|
+ id = idr_alloc(idr, ptr, start, curr, gfp);
|
|
|
|
|
|
- if (id > idr_max(p->layer + 1))
|
|
|
- return NULL;
|
|
|
- BUG_ON(n == 0);
|
|
|
+ if (id >= 0)
|
|
|
+ idr->idr_next = id + 1U;
|
|
|
|
|
|
- while (n > 0 && p) {
|
|
|
- n -= IDR_BITS;
|
|
|
- BUG_ON(n != p->layer*IDR_BITS);
|
|
|
- p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
|
|
|
- }
|
|
|
- return((void *)p);
|
|
|
+ return id;
|
|
|
}
|
|
|
-EXPORT_SYMBOL(idr_find_slowpath);
|
|
|
+EXPORT_SYMBOL(idr_alloc_cyclic);
|
|
|
|
|
|
/**
|
|
|
* idr_for_each - iterate through all stored pointers
|
|
|
- * @idp: idr handle
|
|
|
+ * @idr: idr handle
|
|
|
* @fn: function to be called for each pointer
|
|
|
- * @data: data passed back to callback function
|
|
|
+ * @data: data passed to callback function
|
|
|
*
|
|
|
- * Iterate over the pointers registered with the given idr. The
|
|
|
- * callback function will be called for each pointer currently
|
|
|
- * registered, passing the id, the pointer and the data pointer passed
|
|
|
- * to this function. It is not safe to modify the idr tree while in
|
|
|
- * the callback, so functions such as idr_get_new and idr_remove are
|
|
|
- * not allowed.
|
|
|
+ * The callback function will be called for each entry in @idr, passing
|
|
|
+ * the id, the pointer and the data pointer passed to this function.
|
|
|
*
|
|
|
- * We check the return of @fn each time. If it returns anything other
|
|
|
- * than %0, we break out and return that value.
|
|
|
+ * If @fn returns anything other than %0, the iteration stops and that
|
|
|
+ * value is returned from this function.
|
|
|
*
|
|
|
- * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
|
|
|
+ * idr_for_each() can be called concurrently with idr_alloc() and
|
|
|
+ * idr_remove() if protected by RCU. Newly added entries may not be
|
|
|
+ * seen and deleted entries may be seen, but adding and removing entries
|
|
|
+ * will not cause other entries to be skipped, nor spurious ones to be seen.
|
|
|
*/
|
|
|
-int idr_for_each(struct idr *idp,
|
|
|
- int (*fn)(int id, void *p, void *data), void *data)
|
|
|
+int idr_for_each(const struct idr *idr,
|
|
|
+ int (*fn)(int id, void *p, void *data), void *data)
|
|
|
{
|
|
|
- int n, id, max, error = 0;
|
|
|
- struct idr_layer *p;
|
|
|
- struct idr_layer *pa[MAX_IDR_LEVEL + 1];
|
|
|
- struct idr_layer **paa = &pa[0];
|
|
|
-
|
|
|
- n = idp->layers * IDR_BITS;
|
|
|
- *paa = rcu_dereference_raw(idp->top);
|
|
|
- max = idr_max(idp->layers);
|
|
|
-
|
|
|
- id = 0;
|
|
|
- while (id >= 0 && id <= max) {
|
|
|
- p = *paa;
|
|
|
- while (n > 0 && p) {
|
|
|
- n -= IDR_BITS;
|
|
|
- p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
|
|
|
- *++paa = p;
|
|
|
- }
|
|
|
-
|
|
|
- if (p) {
|
|
|
- error = fn(id, (void *)p, data);
|
|
|
- if (error)
|
|
|
- break;
|
|
|
- }
|
|
|
+ struct radix_tree_iter iter;
|
|
|
+ void **slot;
|
|
|
|
|
|
- id += 1 << n;
|
|
|
- while (n < fls(id)) {
|
|
|
- n += IDR_BITS;
|
|
|
- --paa;
|
|
|
- }
|
|
|
+ radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
|
|
|
+ int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
|
|
|
+ if (ret)
|
|
|
+ return ret;
|
|
|
}
|
|
|
|
|
|
- return error;
|
|
|
+ return 0;
|
|
|
}
|
|
|
EXPORT_SYMBOL(idr_for_each);
|
|
|
|
|
|
/**
|
|
|
- * idr_get_next - lookup next object of id to given id.
|
|
|
- * @idp: idr handle
|
|
|
- * @nextidp: pointer to lookup key
|
|
|
- *
|
|
|
- * Returns pointer to registered object with id, which is next number to
|
|
|
- * given id. After being looked up, *@nextidp will be updated for the next
|
|
|
- * iteration.
|
|
|
- *
|
|
|
- * This function can be called under rcu_read_lock(), given that the leaf
|
|
|
- * pointers lifetimes are correctly managed.
|
|
|
+ * idr_get_next - Find next populated entry
|
|
|
+ * @idr: idr handle
|
|
|
+ * @nextid: Pointer to lowest possible ID to return
|
|
|
+ *
|
|
|
+ * Returns the next populated entry in the tree with an ID greater than
|
|
|
+ * or equal to the value pointed to by @nextid. On exit, @nextid is updated
|
|
|
+ * to the ID of the found value. To use in a loop, the value pointed to by
|
|
|
+ * nextid must be incremented by the user.
|
|
|
*/
|
|
|
-void *idr_get_next(struct idr *idp, int *nextidp)
|
|
|
+void *idr_get_next(struct idr *idr, int *nextid)
|
|
|
{
|
|
|
- struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
|
|
|
- struct idr_layer **paa = &pa[0];
|
|
|
- int id = *nextidp;
|
|
|
- int n, max;
|
|
|
+ struct radix_tree_iter iter;
|
|
|
+ void **slot;
|
|
|
|
|
|
- /* find first ent */
|
|
|
- p = *paa = rcu_dereference_raw(idp->top);
|
|
|
- if (!p)
|
|
|
+ slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
|
|
|
+ if (!slot)
|
|
|
return NULL;
|
|
|
- n = (p->layer + 1) * IDR_BITS;
|
|
|
- max = idr_max(p->layer + 1);
|
|
|
-
|
|
|
- while (id >= 0 && id <= max) {
|
|
|
- p = *paa;
|
|
|
- while (n > 0 && p) {
|
|
|
- n -= IDR_BITS;
|
|
|
- p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
|
|
|
- *++paa = p;
|
|
|
- }
|
|
|
|
|
|
- if (p) {
|
|
|
- *nextidp = id;
|
|
|
- return p;
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * Proceed to the next layer at the current level. Unlike
|
|
|
- * idr_for_each(), @id isn't guaranteed to be aligned to
|
|
|
- * layer boundary at this point and adding 1 << n may
|
|
|
- * incorrectly skip IDs. Make sure we jump to the
|
|
|
- * beginning of the next layer using round_up().
|
|
|
- */
|
|
|
- id = round_up(id + 1, 1 << n);
|
|
|
- while (n < fls(id)) {
|
|
|
- n += IDR_BITS;
|
|
|
- --paa;
|
|
|
- }
|
|
|
- }
|
|
|
- return NULL;
|
|
|
+ *nextid = iter.index;
|
|
|
+ return rcu_dereference_raw(*slot);
|
|
|
}
|
|
|
EXPORT_SYMBOL(idr_get_next);
|
|
|
|
|
|
-
|
|
|
/**
|
|
|
* idr_replace - replace pointer for given id
|
|
|
- * @idp: idr handle
|
|
|
- * @ptr: pointer you want associated with the id
|
|
|
- * @id: lookup key
|
|
|
+ * @idr: idr handle
|
|
|
+ * @ptr: New pointer to associate with the ID
|
|
|
+ * @id: Lookup key
|
|
|
*
|
|
|
- * Replace the pointer registered with an id and return the old value.
|
|
|
- * A %-ENOENT return indicates that @id was not found.
|
|
|
- * A %-EINVAL return indicates that @id was not within valid constraints.
|
|
|
+ * Replace the pointer registered with an ID and return the old value.
|
|
|
+ * This function can be called under the RCU read lock concurrently with
|
|
|
+ * idr_alloc() and idr_remove() (as long as the ID being removed is not
|
|
|
+ * the one being replaced!).
|
|
|
*
|
|
|
- * The caller must serialize with writers.
|
|
|
+ * Returns: 0 on success. %-ENOENT indicates that @id was not found.
|
|
|
+ * %-EINVAL indicates that @id or @ptr were not valid.
|
|
|
*/
|
|
|
-void *idr_replace(struct idr *idp, void *ptr, int id)
|
|
|
+void *idr_replace(struct idr *idr, void *ptr, int id)
|
|
|
{
|
|
|
- int n;
|
|
|
- struct idr_layer *p, *old_p;
|
|
|
+ struct radix_tree_node *node;
|
|
|
+ void **slot = NULL;
|
|
|
+ void *entry;
|
|
|
|
|
|
- if (id < 0)
|
|
|
+ if (WARN_ON_ONCE(id < 0))
|
|
|
+ return ERR_PTR(-EINVAL);
|
|
|
+ if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
- p = idp->top;
|
|
|
- if (!p)
|
|
|
- return ERR_PTR(-ENOENT);
|
|
|
-
|
|
|
- if (id > idr_max(p->layer + 1))
|
|
|
- return ERR_PTR(-ENOENT);
|
|
|
-
|
|
|
- n = p->layer * IDR_BITS;
|
|
|
- while ((n > 0) && p) {
|
|
|
- p = p->ary[(id >> n) & IDR_MASK];
|
|
|
- n -= IDR_BITS;
|
|
|
- }
|
|
|
-
|
|
|
- n = id & IDR_MASK;
|
|
|
- if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
|
|
|
+ entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
|
|
|
+ if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
|
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
|
|
- old_p = p->ary[n];
|
|
|
- rcu_assign_pointer(p->ary[n], ptr);
|
|
|
+ __radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL, NULL);
|
|
|
|
|
|
- return old_p;
|
|
|
+ return entry;
|
|
|
}
|
|
|
EXPORT_SYMBOL(idr_replace);
|
|
|
|
|
|
-void __init idr_init_cache(void)
|
|
|
-{
|
|
|
- idr_layer_cache = kmem_cache_create("idr_layer_cache",
|
|
|
- sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
|
|
|
-}
|
|
|
-
|
|
|
-/**
|
|
|
- * idr_init - initialize idr handle
|
|
|
- * @idp: idr handle
|
|
|
- *
|
|
|
- * This function is use to set up the handle (@idp) that you will pass
|
|
|
- * to the rest of the functions.
|
|
|
- */
|
|
|
-void idr_init(struct idr *idp)
|
|
|
-{
|
|
|
- memset(idp, 0, sizeof(struct idr));
|
|
|
- spin_lock_init(&idp->lock);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(idr_init);
|
|
|
-
|
|
|
-static int idr_has_entry(int id, void *p, void *data)
|
|
|
-{
|
|
|
- return 1;
|
|
|
-}
|
|
|
-
|
|
|
-bool idr_is_empty(struct idr *idp)
|
|
|
-{
|
|
|
- return !idr_for_each(idp, idr_has_entry, NULL);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(idr_is_empty);
|
|
|
-
|
|
|
/**
|
|
|
* DOC: IDA description
|
|
|
- * IDA - IDR based ID allocator
|
|
|
- *
|
|
|
- * This is id allocator without id -> pointer translation. Memory
|
|
|
- * usage is much lower than full blown idr because each id only
|
|
|
- * occupies a bit. ida uses a custom leaf node which contains
|
|
|
- * IDA_BITMAP_BITS slots.
|
|
|
*
|
|
|
- * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
|
|
|
+ * The IDA is an ID allocator which does not provide the ability to
|
|
|
+ * associate an ID with a pointer. As such, it only needs to store one
|
|
|
+ * bit per ID, and so is more space efficient than an IDR. To use an IDA,
|
|
|
+ * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
|
|
|
+ * then initialise it using ida_init()). To allocate a new ID, call
|
|
|
+ * ida_simple_get(). To free an ID, call ida_simple_remove().
|
|
|
+ *
|
|
|
+ * If you have more complex locking requirements, use a loop around
|
|
|
+ * ida_pre_get() and ida_get_new() to allocate a new ID. Then use
|
|
|
+ * ida_remove() to free an ID. You must make sure that ida_get_new() and
|
|
|
+ * ida_remove() cannot be called at the same time as each other for the
|
|
|
+ * same IDA.
|
|
|
+ *
|
|
|
+ * You can also use ida_get_new_above() if you need an ID to be allocated
|
|
|
+ * above a particular number. ida_destroy() can be used to dispose of an
|
|
|
+ * IDA without needing to free the individual IDs in it. You can use
|
|
|
+ * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
|
|
|
+ *
|
|
|
+ * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
|
|
|
+ * limitation, it should be quite straightforward to raise the maximum.
|
|
|
*/
|
|
|
|
|
|
-static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
|
|
|
-{
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
- if (!ida->free_bitmap) {
|
|
|
- spin_lock_irqsave(&ida->idr.lock, flags);
|
|
|
- if (!ida->free_bitmap) {
|
|
|
- ida->free_bitmap = bitmap;
|
|
|
- bitmap = NULL;
|
|
|
- }
|
|
|
- spin_unlock_irqrestore(&ida->idr.lock, flags);
|
|
|
- }
|
|
|
-
|
|
|
- kfree(bitmap);
|
|
|
-}
|
|
|
-
|
|
|
/**
|
|
|
* ida_pre_get - reserve resources for ida allocation
|
|
|
- * @ida: ida handle
|
|
|
- * @gfp_mask: memory allocation flag
|
|
|
- *
|
|
|
- * This function should be called prior to locking and calling the
|
|
|
- * following function. It preallocates enough memory to satisfy the
|
|
|
- * worst possible allocation.
|
|
|
+ * @ida: ida handle
|
|
|
+ * @gfp: memory allocation flags
|
|
|
*
|
|
|
- * If the system is REALLY out of memory this function returns %0,
|
|
|
- * otherwise %1.
|
|
|
+ * This function should be called before calling ida_get_new_above(). If it
|
|
|
+ * is unable to allocate memory, it will return %0. On success, it returns %1.
|
|
|
*/
|
|
|
-int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
|
|
|
+int ida_pre_get(struct ida *ida, gfp_t gfp)
|
|
|
{
|
|
|
- /* allocate idr_layers */
|
|
|
- if (!__idr_pre_get(&ida->idr, gfp_mask))
|
|
|
- return 0;
|
|
|
+ struct ida_bitmap *bitmap;
|
|
|
|
|
|
- /* allocate free_bitmap */
|
|
|
- if (!ida->free_bitmap) {
|
|
|
- struct ida_bitmap *bitmap;
|
|
|
+ /*
|
|
|
+ * This looks weird, but the IDA API has no preload_end() equivalent.
|
|
|
+ * Instead, ida_get_new() can return -EAGAIN, prompting the caller
|
|
|
+ * to return to the ida_pre_get() step.
|
|
|
+ */
|
|
|
+ idr_preload(gfp);
|
|
|
+ idr_preload_end();
|
|
|
|
|
|
- bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
|
|
|
+ if (!ida->free_bitmap) {
|
|
|
+ bitmap = kmalloc(sizeof(struct ida_bitmap), gfp);
|
|
|
if (!bitmap)
|
|
|
return 0;
|
|
|
-
|
|
|
- free_bitmap(ida, bitmap);
|
|
|
+ bitmap = xchg(&ida->free_bitmap, bitmap);
|
|
|
+ kfree(bitmap);
|
|
|
}
|
|
|
|
|
|
return 1;
|
|
|
}
|
|
|
EXPORT_SYMBOL(ida_pre_get);
|
|
|
|
|
|
+#define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)
|
|
|
+
|
|
|
/**
|
|
|
* ida_get_new_above - allocate new ID above or equal to a start id
|
|
|
- * @ida: ida handle
|
|
|
- * @starting_id: id to start search at
|
|
|
- * @p_id: pointer to the allocated handle
|
|
|
+ * @ida: ida handle
|
|
|
+ * @start: id to start search at
|
|
|
+ * @id: pointer to the allocated handle
|
|
|
*
|
|
|
- * Allocate new ID above or equal to @starting_id. It should be called
|
|
|
- * with any required locks.
|
|
|
+ * Allocate new ID above or equal to @start. It should be called
|
|
|
+ * with any required locks to ensure that concurrent calls to
|
|
|
+ * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
|
|
|
+ * Consider using ida_simple_get() if you do not have complex locking
|
|
|
+ * requirements.
|
|
|
*
|
|
|
* If memory is required, it will return %-EAGAIN, you should unlock
|
|
|
* and go back to the ida_pre_get() call. If the ida is full, it will
|
|
|
- * return %-ENOSPC.
|
|
|
- *
|
|
|
- * Note that callers must ensure that concurrent access to @ida is not possible.
|
|
|
- * See ida_simple_get() for a varaint which takes care of locking.
|
|
|
+ * return %-ENOSPC. On success, it will return 0.
|
|
|
*
|
|
|
- * @p_id returns a value in the range @starting_id ... %0x7fffffff.
|
|
|
+ * @id returns a value in the range @start ... %0x7fffffff.
|
|
|
*/
|
|
|
-int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
|
|
|
+int ida_get_new_above(struct ida *ida, int start, int *id)
|
|
|
{
|
|
|
- struct idr_layer *pa[MAX_IDR_LEVEL + 1];
|
|
|
+ struct radix_tree_root *root = &ida->ida_rt;
|
|
|
+ void **slot;
|
|
|
+ struct radix_tree_iter iter;
|
|
|
struct ida_bitmap *bitmap;
|
|
|
- unsigned long flags;
|
|
|
- int idr_id = starting_id / IDA_BITMAP_BITS;
|
|
|
- int offset = starting_id % IDA_BITMAP_BITS;
|
|
|
- int t, id;
|
|
|
-
|
|
|
- restart:
|
|
|
- /* get vacant slot */
|
|
|
- t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
|
|
|
- if (t < 0)
|
|
|
- return t == -ENOMEM ? -EAGAIN : t;
|
|
|
-
|
|
|
- if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
|
|
|
- return -ENOSPC;
|
|
|
-
|
|
|
- if (t != idr_id)
|
|
|
- offset = 0;
|
|
|
- idr_id = t;
|
|
|
-
|
|
|
- /* if bitmap isn't there, create a new one */
|
|
|
- bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
|
|
|
- if (!bitmap) {
|
|
|
- spin_lock_irqsave(&ida->idr.lock, flags);
|
|
|
- bitmap = ida->free_bitmap;
|
|
|
- ida->free_bitmap = NULL;
|
|
|
- spin_unlock_irqrestore(&ida->idr.lock, flags);
|
|
|
-
|
|
|
- if (!bitmap)
|
|
|
- return -EAGAIN;
|
|
|
-
|
|
|
- memset(bitmap, 0, sizeof(struct ida_bitmap));
|
|
|
- rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
|
|
|
- (void *)bitmap);
|
|
|
- pa[0]->count++;
|
|
|
- }
|
|
|
-
|
|
|
- /* lookup for empty slot */
|
|
|
- t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
|
|
|
- if (t == IDA_BITMAP_BITS) {
|
|
|
- /* no empty slot after offset, continue to the next chunk */
|
|
|
- idr_id++;
|
|
|
- offset = 0;
|
|
|
- goto restart;
|
|
|
- }
|
|
|
-
|
|
|
- id = idr_id * IDA_BITMAP_BITS + t;
|
|
|
- if (id >= MAX_IDR_BIT)
|
|
|
- return -ENOSPC;
|
|
|
-
|
|
|
- __set_bit(t, bitmap->bitmap);
|
|
|
- if (++bitmap->nr_busy == IDA_BITMAP_BITS)
|
|
|
- idr_mark_full(pa, idr_id);
|
|
|
+ unsigned long index;
|
|
|
+ unsigned bit;
|
|
|
+ int new;
|
|
|
+
|
|
|
+ index = start / IDA_BITMAP_BITS;
|
|
|
+ bit = start % IDA_BITMAP_BITS;
|
|
|
+
|
|
|
+ slot = radix_tree_iter_init(&iter, index);
|
|
|
+ for (;;) {
|
|
|
+ if (slot)
|
|
|
+ slot = radix_tree_next_slot(slot, &iter,
|
|
|
+ RADIX_TREE_ITER_TAGGED);
|
|
|
+ if (!slot) {
|
|
|
+ slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
|
|
|
+ if (IS_ERR(slot)) {
|
|
|
+ if (slot == ERR_PTR(-ENOMEM))
|
|
|
+ return -EAGAIN;
|
|
|
+ return PTR_ERR(slot);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (iter.index > index)
|
|
|
+ bit = 0;
|
|
|
+ new = iter.index * IDA_BITMAP_BITS;
|
|
|
+ bitmap = rcu_dereference_raw(*slot);
|
|
|
+ if (bitmap) {
|
|
|
+ bit = find_next_zero_bit(bitmap->bitmap,
|
|
|
+ IDA_BITMAP_BITS, bit);
|
|
|
+ new += bit;
|
|
|
+ if (new < 0)
|
|
|
+ return -ENOSPC;
|
|
|
+ if (bit == IDA_BITMAP_BITS)
|
|
|
+ continue;
|
|
|
|
|
|
- *p_id = id;
|
|
|
+ __set_bit(bit, bitmap->bitmap);
|
|
|
+ if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
|
|
|
+ radix_tree_iter_tag_clear(root, &iter,
|
|
|
+ IDR_FREE);
|
|
|
+ } else {
|
|
|
+ new += bit;
|
|
|
+ if (new < 0)
|
|
|
+ return -ENOSPC;
|
|
|
+ bitmap = ida->free_bitmap;
|
|
|
+ if (!bitmap)
|
|
|
+ return -EAGAIN;
|
|
|
+ ida->free_bitmap = NULL;
|
|
|
+ memset(bitmap, 0, sizeof(*bitmap));
|
|
|
+ __set_bit(bit, bitmap->bitmap);
|
|
|
+ radix_tree_iter_replace(root, &iter, slot, bitmap);
|
|
|
+ }
|
|
|
|
|
|
- /* Each leaf node can handle nearly a thousand slots and the
|
|
|
- * whole idea of ida is to have small memory foot print.
|
|
|
- * Throw away extra resources one by one after each successful
|
|
|
- * allocation.
|
|
|
- */
|
|
|
- if (ida->idr.id_free_cnt || ida->free_bitmap) {
|
|
|
- struct idr_layer *p = get_from_free_list(&ida->idr);
|
|
|
- if (p)
|
|
|
- kmem_cache_free(idr_layer_cache, p);
|
|
|
+ *id = new;
|
|
|
+ return 0;
|
|
|
}
|
|
|
-
|
|
|
- return 0;
|
|
|
}
|
|
|
EXPORT_SYMBOL(ida_get_new_above);
|
|
|
|
|
|
/**
|
|
|
- * ida_remove - remove the given ID
|
|
|
- * @ida: ida handle
|
|
|
- * @id: ID to free
|
|
|
+ * ida_remove - Free the given ID
|
|
|
+ * @ida: ida handle
|
|
|
+ * @id: ID to free
|
|
|
+ *
|
|
|
+ * This function should not be called at the same time as ida_get_new_above().
|
|
|
*/
|
|
|
void ida_remove(struct ida *ida, int id)
|
|
|
{
|
|
|
- struct idr_layer *p = ida->idr.top;
|
|
|
- int shift = (ida->idr.layers - 1) * IDR_BITS;
|
|
|
- int idr_id = id / IDA_BITMAP_BITS;
|
|
|
- int offset = id % IDA_BITMAP_BITS;
|
|
|
- int n;
|
|
|
+ unsigned long index = id / IDA_BITMAP_BITS;
|
|
|
+ unsigned offset = id % IDA_BITMAP_BITS;
|
|
|
struct ida_bitmap *bitmap;
|
|
|
+ struct radix_tree_iter iter;
|
|
|
+ void **slot;
|
|
|
|
|
|
- if (idr_id > idr_max(ida->idr.layers))
|
|
|
+ slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
|
|
|
+ if (!slot)
|
|
|
goto err;
|
|
|
|
|
|
- /* clear full bits while looking up the leaf idr_layer */
|
|
|
- while ((shift > 0) && p) {
|
|
|
- n = (idr_id >> shift) & IDR_MASK;
|
|
|
- __clear_bit(n, p->bitmap);
|
|
|
- p = p->ary[n];
|
|
|
- shift -= IDR_BITS;
|
|
|
- }
|
|
|
-
|
|
|
- if (p == NULL)
|
|
|
- goto err;
|
|
|
-
|
|
|
- n = idr_id & IDR_MASK;
|
|
|
- __clear_bit(n, p->bitmap);
|
|
|
-
|
|
|
- bitmap = (void *)p->ary[n];
|
|
|
- if (!bitmap || !test_bit(offset, bitmap->bitmap))
|
|
|
+ bitmap = rcu_dereference_raw(*slot);
|
|
|
+ if (!test_bit(offset, bitmap->bitmap))
|
|
|
goto err;
|
|
|
|
|
|
- /* update bitmap and remove it if empty */
|
|
|
__clear_bit(offset, bitmap->bitmap);
|
|
|
- if (--bitmap->nr_busy == 0) {
|
|
|
- __set_bit(n, p->bitmap); /* to please idr_remove() */
|
|
|
- idr_remove(&ida->idr, idr_id);
|
|
|
- free_bitmap(ida, bitmap);
|
|
|
+ radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
|
|
|
+ if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
|
|
|
+ kfree(bitmap);
|
|
|
+ radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
|
|
|
}
|
|
|
-
|
|
|
return;
|
|
|
-
|
|
|
err:
|
|
|
WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
|
|
|
}
|
|
|
EXPORT_SYMBOL(ida_remove);
|
|
|
|
|
|
/**
|
|
|
- * ida_destroy - release all cached layers within an ida tree
|
|
|
- * @ida: ida handle
|
|
|
+ * ida_destroy - Free the contents of an ida
|
|
|
+ * @ida: ida handle
|
|
|
+ *
|
|
|
+ * Calling this function releases all resources associated with an IDA. When
|
|
|
+ * this call returns, the IDA is empty and can be reused or freed. The caller
|
|
|
+ * should not allow ida_remove() or ida_get_new_above() to be called at the
|
|
|
+ * same time.
|
|
|
*/
|
|
|
void ida_destroy(struct ida *ida)
|
|
|
{
|
|
|
- idr_destroy(&ida->idr);
|
|
|
+ struct radix_tree_iter iter;
|
|
|
+ void **slot;
|
|
|
+
|
|
|
+ radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
|
|
|
+ struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
|
|
|
+ kfree(bitmap);
|
|
|
+ radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
|
|
|
+ }
|
|
|
+
|
|
|
kfree(ida->free_bitmap);
|
|
|
+ ida->free_bitmap = NULL;
|
|
|
}
|
|
|
EXPORT_SYMBOL(ida_destroy);
|
|
|
|
|
@@ -1141,18 +442,3 @@ void ida_simple_remove(struct ida *ida, unsigned int id)
|
|
|
spin_unlock_irqrestore(&simple_ida_lock, flags);
|
|
|
}
|
|
|
EXPORT_SYMBOL(ida_simple_remove);
|
|
|
-
|
|
|
-/**
|
|
|
- * ida_init - initialize ida handle
|
|
|
- * @ida: ida handle
|
|
|
- *
|
|
|
- * This function is use to set up the handle (@ida) that you will pass
|
|
|
- * to the rest of the functions.
|
|
|
- */
|
|
|
-void ida_init(struct ida *ida)
|
|
|
-{
|
|
|
- memset(ida, 0, sizeof(struct ida));
|
|
|
- idr_init(&ida->idr);
|
|
|
-
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(ida_init);
|