|
@@ -0,0 +1,171 @@
|
|
|
+/*
|
|
|
+ * Copyright (C) 2013 ARM Ltd.
|
|
|
+ * Copyright (C) 2013 Linaro.
|
|
|
+ *
|
|
|
+ * This code is based on glibc cortex strings work originally authored by Linaro
|
|
|
+ * and re-licensed under GPLv2 for the Linux kernel. The original code can
|
|
|
+ * be found @
|
|
|
+ *
|
|
|
+ * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
|
|
+ * files/head:/src/aarch64/
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License version 2 as
|
|
|
+ * published by the Free Software Foundation.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
+ */
|
|
|
+
|
|
|
+#include <linux/linkage.h>
|
|
|
+#include <asm/assembler.h>
|
|
|
+
|
|
|
+/*
|
|
|
+ * determine the length of a fixed-size string
|
|
|
+ *
|
|
|
+ * Parameters:
|
|
|
+ * x0 - const string pointer
|
|
|
+ * x1 - maximal string length
|
|
|
+ * Returns:
|
|
|
+ * x0 - the return length of specific string
|
|
|
+ */
|
|
|
+
|
|
|
+/* Arguments and results. */
|
|
|
+srcin .req x0
|
|
|
+len .req x0
|
|
|
+limit .req x1
|
|
|
+
|
|
|
+/* Locals and temporaries. */
|
|
|
+src .req x2
|
|
|
+data1 .req x3
|
|
|
+data2 .req x4
|
|
|
+data2a .req x5
|
|
|
+has_nul1 .req x6
|
|
|
+has_nul2 .req x7
|
|
|
+tmp1 .req x8
|
|
|
+tmp2 .req x9
|
|
|
+tmp3 .req x10
|
|
|
+tmp4 .req x11
|
|
|
+zeroones .req x12
|
|
|
+pos .req x13
|
|
|
+limit_wd .req x14
|
|
|
+
|
|
|
+#define REP8_01 0x0101010101010101
|
|
|
+#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
|
|
+#define REP8_80 0x8080808080808080
|
|
|
+
|
|
|
+ENTRY(strnlen)
|
|
|
+ cbz limit, .Lhit_limit
|
|
|
+ mov zeroones, #REP8_01
|
|
|
+ bic src, srcin, #15
|
|
|
+ ands tmp1, srcin, #15
|
|
|
+ b.ne .Lmisaligned
|
|
|
+ /* Calculate the number of full and partial words -1. */
|
|
|
+ sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */
|
|
|
+ lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
|
|
+ * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
|
|
+ * can be done in parallel across the entire word.
|
|
|
+ */
|
|
|
+ /*
|
|
|
+ * The inner loop deals with two Dwords at a time. This has a
|
|
|
+ * slightly higher start-up cost, but we should win quite quickly,
|
|
|
+ * especially on cores with a high number of issue slots per
|
|
|
+ * cycle, as we get much better parallelism out of the operations.
|
|
|
+ */
|
|
|
+.Lloop:
|
|
|
+ ldp data1, data2, [src], #16
|
|
|
+.Lrealigned:
|
|
|
+ sub tmp1, data1, zeroones
|
|
|
+ orr tmp2, data1, #REP8_7f
|
|
|
+ sub tmp3, data2, zeroones
|
|
|
+ orr tmp4, data2, #REP8_7f
|
|
|
+ bic has_nul1, tmp1, tmp2
|
|
|
+ bic has_nul2, tmp3, tmp4
|
|
|
+ subs limit_wd, limit_wd, #1
|
|
|
+ orr tmp1, has_nul1, has_nul2
|
|
|
+ ccmp tmp1, #0, #0, pl /* NZCV = 0000 */
|
|
|
+ b.eq .Lloop
|
|
|
+
|
|
|
+ cbz tmp1, .Lhit_limit /* No null in final Qword. */
|
|
|
+
|
|
|
+ /*
|
|
|
+ * We know there's a null in the final Qword. The easiest thing
|
|
|
+ * to do now is work out the length of the string and return
|
|
|
+ * MIN (len, limit).
|
|
|
+ */
|
|
|
+ sub len, src, srcin
|
|
|
+ cbz has_nul1, .Lnul_in_data2
|
|
|
+CPU_BE( mov data2, data1 ) /*perpare data to re-calculate the syndrome*/
|
|
|
+
|
|
|
+ sub len, len, #8
|
|
|
+ mov has_nul2, has_nul1
|
|
|
+.Lnul_in_data2:
|
|
|
+ /*
|
|
|
+ * For big-endian, carry propagation (if the final byte in the
|
|
|
+ * string is 0x01) means we cannot use has_nul directly. The
|
|
|
+ * easiest way to get the correct byte is to byte-swap the data
|
|
|
+ * and calculate the syndrome a second time.
|
|
|
+ */
|
|
|
+CPU_BE( rev data2, data2 )
|
|
|
+CPU_BE( sub tmp1, data2, zeroones )
|
|
|
+CPU_BE( orr tmp2, data2, #REP8_7f )
|
|
|
+CPU_BE( bic has_nul2, tmp1, tmp2 )
|
|
|
+
|
|
|
+ sub len, len, #8
|
|
|
+ rev has_nul2, has_nul2
|
|
|
+ clz pos, has_nul2
|
|
|
+ add len, len, pos, lsr #3 /* Bits to bytes. */
|
|
|
+ cmp len, limit
|
|
|
+ csel len, len, limit, ls /* Return the lower value. */
|
|
|
+ ret
|
|
|
+
|
|
|
+.Lmisaligned:
|
|
|
+ /*
|
|
|
+ * Deal with a partial first word.
|
|
|
+ * We're doing two things in parallel here;
|
|
|
+ * 1) Calculate the number of words (but avoiding overflow if
|
|
|
+ * limit is near ULONG_MAX) - to do this we need to work out
|
|
|
+ * limit + tmp1 - 1 as a 65-bit value before shifting it;
|
|
|
+ * 2) Load and mask the initial data words - we force the bytes
|
|
|
+ * before the ones we are interested in to 0xff - this ensures
|
|
|
+ * early bytes will not hit any zero detection.
|
|
|
+ */
|
|
|
+ ldp data1, data2, [src], #16
|
|
|
+
|
|
|
+ sub limit_wd, limit, #1
|
|
|
+ and tmp3, limit_wd, #15
|
|
|
+ lsr limit_wd, limit_wd, #4
|
|
|
+
|
|
|
+ add tmp3, tmp3, tmp1
|
|
|
+ add limit_wd, limit_wd, tmp3, lsr #4
|
|
|
+
|
|
|
+ neg tmp4, tmp1
|
|
|
+ lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */
|
|
|
+
|
|
|
+ mov tmp2, #~0
|
|
|
+ /* Big-endian. Early bytes are at MSB. */
|
|
|
+CPU_BE( lsl tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
|
|
|
+ /* Little-endian. Early bytes are at LSB. */
|
|
|
+CPU_LE( lsr tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */
|
|
|
+
|
|
|
+ cmp tmp1, #8
|
|
|
+
|
|
|
+ orr data1, data1, tmp2
|
|
|
+ orr data2a, data2, tmp2
|
|
|
+
|
|
|
+ csinv data1, data1, xzr, le
|
|
|
+ csel data2, data2, data2a, le
|
|
|
+ b .Lrealigned
|
|
|
+
|
|
|
+.Lhit_limit:
|
|
|
+ mov len, limit
|
|
|
+ ret
|
|
|
+ENDPROC(strnlen)
|