/* Copyright (C) 2001-2008 Stéphane Raimbault This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* The library is designed to send and receive data from a device that communicate via the Modbus protocol. The function names used are inspired by the Modicon Modbus Protocol Reference Guide which can be obtained from Schneider at www.schneiderautomation.com. Documentation: http://www.easysw.com/~mike/serial/serial.html */ #include #include #include #include #include #include #include #include #include #include /* TCP */ #include #include #include #include #include #include #include #include "modbus.h" #define UNKNOWN_ERROR_MSG "Not defined in modbus specification" static const uint8_t NB_TAB_ERROR_MSG = 12; static const char *TAB_ERROR_MSG[] = { /* 0x00 */ UNKNOWN_ERROR_MSG, /* 0x01 */ "Illegal function code", /* 0x02 */ "Illegal data address", /* 0x03 */ "Illegal data value", /* 0x04 */ "Slave device or server failure", /* 0x05 */ "Acknowledge", /* 0x06 */ "Slave device or server busy", /* 0x07 */ "Negative acknowledge", /* 0x08 */ "Memory parity error", /* 0x09 */ UNKNOWN_ERROR_MSG, /* 0x0A */ "Gateway path unavailable", /* 0x0B */ "Target device failed to respond" }; /* Table of CRC values for high-order byte */ static uint8_t table_crc_hi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; /* Table of CRC values for low-order byte */ static uint8_t table_crc_lo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 }; /* Local declaration */ static int read_reg_response(modbus_param_t *mb_param, uint16_t *data_dest, uint8_t *query); /* Treats errors and flush or close connection if necessary */ static void error_treat(int ret, const char *string, modbus_param_t *mb_param) { if (ret == -1) perror(string); printf("\n\nERROR %s\n\n", string); if (mb_param->type_com == RTU) { tcflush(mb_param->fd, TCIOFLUSH); } else { if (mb_param->error_handling == RECONNECT_ON_ERROR) { modbus_close(mb_param); modbus_connect(mb_param); } } } /* Computes the size of the expected response */ static unsigned int compute_response_size(modbus_param_t *mb_param, uint8_t *query) { int response_size_computed; int offset; offset = mb_param->header_length; switch (query[offset + 1]) { case FC_READ_COIL_STATUS: case FC_READ_INPUT_STATUS: { /* Header + nb values (code from force_multiple_coils) */ int coil_count = (query[offset + 4] << 8) | query[offset + 5]; response_size_computed = 3 + (coil_count / 8) + ((coil_count % 8) ? 1 : 0); } break; case FC_READ_HOLDING_REGISTERS: case FC_READ_INPUT_REGISTERS: /* Header + 2 * nb values */ response_size_computed = 3 + 2 * (query[offset + 4] << 8 | query[offset + 5]); break; case FC_READ_EXCEPTION_STATUS: response_size_computed = 4; break; default: response_size_computed = 6; } response_size_computed += offset + mb_param->checksum_size; return response_size_computed; } /* Buils a RTU header */ static int build_query_packet_rtu(uint8_t slave, uint8_t function, uint16_t start_addr, uint16_t count, uint8_t *packet) { packet[0] = slave; packet[1] = function; packet[2] = start_addr >> 8; packet[3] = start_addr & 0x00ff; packet[4] = count >> 8; packet[5] = count & 0x00ff; return PRESET_QUERY_SIZE_RTU; } /* Builds a TCP header */ static int build_query_packet_tcp(uint8_t slave, uint8_t function, uint16_t start_addr, uint16_t count, uint8_t *packet) { static uint16_t t_id = 0; /* Transaction ID */ if (t_id < UINT16_MAX) t_id++; else t_id = 0; packet[0] = t_id >> 8; packet[1] = t_id & 0x00ff; /* Protocol Modbus */ packet[2] = 0; packet[3] = 0; /* Length to fix later with set_packet_length_tcp (4 and 5) */ packet[6] = slave; packet[7] = function; packet[8] = start_addr >> 8; packet[9] = start_addr & 0x00ff; packet[10] = count >> 8; packet[11] = count & 0x00ff; return PRESET_QUERY_SIZE_TCP; } static int build_query_packet(modbus_param_t *mb_param, uint8_t slave, uint8_t function, uint16_t start_addr, uint16_t count, uint8_t *packet) { if (mb_param->type_com == RTU) return build_query_packet_rtu(slave, function, start_addr, count, packet); else return build_query_packet_tcp(slave, function, start_addr, count, packet); } static int build_response_packet_rtu(uint8_t slave, uint8_t function, uint8_t byte_count, uint8_t *packet) { packet[0] = slave; packet[1] = function; packet[2] = byte_count; /* FIXME +1 */ return PRESET_RESPONSE_SIZE_RTU+1; } static int build_response_packet_tcp(uint8_t slave, uint8_t function, uint8_t byte_count, uint8_t *packet) { static uint16_t t_id = 0; /* Transaction ID */ if (t_id < USHRT_MAX) t_id++; else t_id = 0; packet[0] = t_id >> 8; packet[1] = t_id & 0x00ff; /* Protocol Modbus */ packet[2] = 0; packet[3] = 0; /* Length to fix later with set_packet_length_tcp (4 and 5) */ packet[6] = slave; packet[7] = function; packet[8] = byte_count; /* FIXME +1 */ return PRESET_RESPONSE_SIZE_TCP+1; } static int build_response_packet(modbus_param_t *mb_param, uint8_t slave, uint8_t function, uint8_t byte_count, uint8_t *packet) { if (mb_param->type_com == RTU) return build_response_packet_rtu(slave, function, byte_count, packet); else return build_response_packet_tcp(slave, function, byte_count, packet); } /* Sets the length of TCP message in the message */ void set_packet_length_tcp(uint8_t *packet, size_t packet_size) { uint16_t mbap_length; /* Substract MBAP header length */ mbap_length = packet_size - 6; packet[4] = mbap_length >> 8; packet[5] = mbap_length & 0x00FF; } /* Fast CRC */ static uint16_t crc16(uint8_t *buffer, uint16_t buffer_length) { uint8_t crc_hi = 0xFF; /* high CRC byte initialized */ uint8_t crc_lo = 0xFF; /* low CRC byte initialized */ unsigned int i; /* will index into CRC lookup */ /* pass through message buffer */ while (buffer_length--) { i = crc_hi ^ *buffer++; /* calculate the CRC */ crc_hi = crc_lo ^ table_crc_hi[i]; crc_lo = table_crc_lo[i]; } return (crc_hi << 8 | crc_lo); } /* If CRC is correct returns 0 else returns INVALID_CRC */ int check_crc16(modbus_param_t *mb_param, uint8_t *msg, int msg_size) { int ret; if (mb_param->type_com == RTU) { uint16_t crc_calc; uint16_t crc_received; crc_calc = crc16(msg, msg_size - 2); crc_received = (msg[msg_size - 2] << 8) | msg[msg_size - 1]; /* Check CRC of msg */ if (crc_calc == crc_received) { ret = 0; } else { char s_error[64]; sprintf(s_error, "invalid crc received %0X - crc_calc %0X", crc_received, crc_calc); error_treat(0, s_error, mb_param); ret = INVALID_CRC; } } else { /* In TCP, the modbus CRC is not present (see HDLC level) */ ret = 0; } return ret; } /* Sends a query/response over a serial or a TCP communication */ static int modbus_send(modbus_param_t *mb_param, uint8_t *query, size_t query_size) { int write_ret; uint16_t s_crc; int i; if (mb_param->type_com == RTU) { s_crc = crc16(query, query_size); query[query_size++] = s_crc >> 8; query[query_size++] = s_crc & 0x00FF; } else { set_packet_length_tcp(query, query_size); } if (mb_param->debug) { printf("\n"); for (i = 0; i < query_size; i++) printf("[%.2X]", query[i]); printf("\n"); } if (mb_param->type_com == RTU) write_ret = write(mb_param->fd, query, query_size); else write_ret = send(mb_param->fd, query, query_size, 0); /* Return the number of bytes written (0 to n) or PORT_SOCKET_FAILURE on error */ if ((write_ret == -1) || (write_ret != query_size)) { error_treat(write_ret, "Write port/socket failure", mb_param); write_ret = PORT_SOCKET_FAILURE; } return write_ret; } /* Computes the size of the header following the function code */ static uint8_t compute_query_size_header(uint8_t function) { uint8_t byte; if (function <= FC_FORCE_SINGLE_COIL) /* Read and single write */ byte = 4; else if (function == FC_FORCE_MULTIPLE_COILS || function == FC_PRESET_MULTIPLE_REGISTERS) /* Multiple write */ byte = 5; else byte = 0; printf("compute_query_size_header FC %d, B%d\n", function, byte); return byte; } /* Computes the size of the data to write in the query */ static uint8_t compute_query_size_data(modbus_param_t *mb_param, uint8_t *msg) { uint8_t function = msg[mb_param->header_length + 1]; uint8_t byte; if (function == FC_FORCE_MULTIPLE_COILS || function == FC_PRESET_MULTIPLE_REGISTERS) byte = msg[mb_param->header_length + 6]; else byte = 0; byte += mb_param->checksum_size; printf("compute_query_size_data FC %d, B %d\n", function, byte); return byte; } #define WAIT_DATA() \ { \ while ((select_ret = select(mb_param->fd+1, &rfds, NULL, NULL, &tv)) == -1) { \ if (errno == EINTR) { \ printf("A non blocked signal was caught\n"); \ /* Necessary after an error */ \ FD_ZERO(&rfds); \ FD_SET(mb_param->fd, &rfds); \ } else { \ error_treat(select_ret, "Select failure", mb_param); \ return SELECT_FAILURE; \ } \ } \ \ if (select_ret == 0) { \ /* Call to error_treat is done later to manage exceptions */ \ return COMM_TIME_OUT; \ } \ } /* Monitors for the reply from the modbus slave or to receive query from a modbus master. This function blocks for timeout seconds if there is no reply. msg_size_computed must be set to MSG_SIZE_COMPUTED if undefined Returns: - 0: OK, <0: error - msg_size: number of characters received. */ int receive_msg(modbus_param_t *mb_param, int msg_size_computed, uint8_t *msg, int *msg_size) { int select_ret; int read_ret; fd_set rfds; struct timeval tv; int size_to_read; uint8_t *p_msg; enum { FUNCTION, BYTE, COMPLETE }; int state; if (mb_param->debug) { if (msg_size_computed == MSG_SIZE_UNDEFINED) printf("Waiting for a message...\n"); else printf("Waiting for a message (%d bytes)...\n", msg_size_computed); } /* Add a file descriptor to the set */ FD_ZERO(&rfds); FD_SET(mb_param->fd, &rfds); if (msg_size_computed == MSG_SIZE_UNDEFINED) { /* Wait for a message */ tv.tv_sec = 60; tv.tv_usec = 0; /* The message size is undefined (query receiving) so * we need to analyse the message step by step. * In the first step, we want to reach the function code */ msg_size_computed = mb_param->header_length + 2; state = FUNCTION; } else { tv.tv_sec = 0; tv.tv_usec = TIME_OUT_BEGIN_OF_TRAME; state = COMPLETE; } size_to_read = msg_size_computed; select_ret = 0; WAIT_DATA(); /* Read the msg */ (*msg_size) = 0; p_msg = msg; while (select_ret) { if (mb_param->type_com == RTU) read_ret = read(mb_param->fd, p_msg, size_to_read); else read_ret = recv(mb_param->fd, p_msg, size_to_read, 0); if (read_ret == -1) { error_treat(read_ret, "Read port/socket failure", mb_param); return PORT_SOCKET_FAILURE; } else if (read_ret == 0) { printf("Connection closed\n"); return CONNECTION_CLOSED; } /* Sums bytes received */ (*msg_size) += read_ret; if ((*msg_size) > MAX_PACKET_SIZE) { error_treat(0, "Too many datas", mb_param); return TOO_MANY_DATAS; } /* Display the hex code of each character received */ if (mb_param->debug) { int i; for (i=0; i < read_ret; i++) printf("<%.2X>", p_msg[i]); } if ((*msg_size) < msg_size_computed) { /* Message incomplete */ size_to_read = msg_size_computed - (*msg_size); } else { switch (state) { case FUNCTION: /* Function code position */ size_to_read = compute_query_size_header(msg[mb_param->header_length + 1]); msg_size_computed += size_to_read; state = BYTE; printf("\nBYTE:"); break; case BYTE: size_to_read = compute_query_size_data(mb_param, msg); msg_size_computed += size_to_read; state = COMPLETE; printf("\nCOMPLETE:"); break; case COMPLETE: size_to_read = 0; break; } } printf(" size to read %d\n", size_to_read); /* Moves the pointer to receive other datas */ p_msg = &(p_msg[read_ret]); if (size_to_read > 0) { /* If no character at the buffer wait TIME_OUT_END_OF_TRAME before to generate an error. */ tv.tv_sec = 0; tv.tv_usec = TIME_OUT_END_OF_TRAME; WAIT_DATA(); } else { /* All chars are received */ select_ret = FALSE; } } if (mb_param->debug) printf("\n"); /* OK */ return 0; } /* Checks whether the right response is returned with good checksum. Returns: - the numbers of values (bits or word) if success - less than 0 for exception errors Note: All functions used to send or receive data with modbus return these values. */ static int modbus_check_response(modbus_param_t *mb_param, uint8_t *query, uint8_t *response) { int response_size; int response_size_computed; int offset = mb_param->header_length; int ret; response_size_computed = compute_response_size(mb_param, query); ret = receive_msg(mb_param, response_size_computed, response, &response_size); if (ret == 0) { /* Check message */ ret = check_crc16(mb_param, response, response_size); if (ret != 0) return ret; /* Good response */ switch (response[offset + 1]) { case FC_READ_COIL_STATUS: case FC_READ_INPUT_STATUS: /* Read functions 1 value = 1 byte */ response_size = response[offset + 2]; break; case FC_READ_HOLDING_REGISTERS: case FC_READ_INPUT_REGISTERS: /* Read functions 1 value = 2 bytes */ response_size = response[offset + 2] / 2; break; case FC_FORCE_MULTIPLE_COILS: case FC_PRESET_MULTIPLE_REGISTERS: /* N Write functions */ response_size = response[offset + 4] << 8 | response[offset + 5]; break; case FC_REPORT_SLAVE_ID: /* Report slave ID (bytes received) */ break; default: /* 1 Write functions & others */ response_size = 1; } } else if (ret == COMM_TIME_OUT && response_size == offset + 3 + mb_param->checksum_size) { /* Optimisation allowed because exception response is the smallest trame in modbus protocol (3) so always raise an timeout error */ /* CRC */ ret = check_crc16(mb_param, response, response_size); if (ret != 0) return ret; /* Check for exception response 0x80 + function */ if (0x80 + query[offset + 1] == response[offset + 1]) { if (response[offset + 2] < NB_TAB_ERROR_MSG) { error_treat(0, TAB_ERROR_MSG[response[offset + 2]], mb_param); /* Modbus error code (negative) */ return -response[offset + 2]; } else { /* The chances are low to hit this case but can avoid a vicious segfault */ char s_error[64]; sprintf(s_error, "Invalid exception code %d", response[offset + 2]); error_treat(0, s_error, mb_param); free(s_error); return INVALID_EXCEPTION_CODE; } } } else if (ret == COMM_TIME_OUT) { error_treat(0, "Communication time out", mb_param); return COMM_TIME_OUT; } else { return ret; } return response_size; } static int response_io_status(uint8_t address, uint16_t count, uint8_t *tab_io_status, uint8_t *response, int offset) { uint8_t shift = 0; uint8_t byte = 0; int i; for (i = address; i < address+count; i++) { byte |= tab_io_status[i] << shift; if (shift == 7) { /* Byte is full */ response[offset++] = byte; byte = shift = 0; } else { shift++; } } if (shift != 0) response[offset++] = byte; return offset; } /* Manages the received query. Analyses the query and constructs a response */ void manage_query(modbus_param_t *mb_param, uint8_t *query, int query_size, modbus_mapping_t *mb_mapping) { int offset = mb_param->header_length; int slave = query[offset]; int function = query[offset+1]; int address = (query[offset+2] << 8) + query[offset+3]; /* FIXME count/data */ int count; int data; uint8_t response[MAX_PACKET_SIZE]; int byte_count; int i; /* FIXME address illegal used in mb_mapping->tab_X */ switch (function) { case FC_READ_COIL_STATUS: count = (query[offset+4] << 8) + query[offset+5]; byte_count = (count / 8) + ((count % 8) ? 1 : 0); offset = build_response_packet(mb_param, slave, function, byte_count, response); offset = response_io_status(address, count, mb_mapping->tab_coil_status, response, offset); break; case FC_READ_INPUT_STATUS: count = (query[offset+4] << 8) + query[offset+5]; byte_count = (count / 8) + ((count % 8) ? 1 : 0); offset = build_response_packet(mb_param, slave, function, byte_count, response); offset = response_io_status(address, count, mb_mapping->tab_input_status, response, offset); break; case FC_READ_HOLDING_REGISTERS: count = (query[offset+4] << 8) + query[offset+5]; byte_count = 2 * count; offset = build_response_packet(mb_param, slave, function, byte_count, response); for (i = address; i < address + count; i++) { response[offset++] = mb_mapping->tab_holding_registers[i] >> 8; response[offset++] = mb_mapping->tab_holding_registers[i] & 0xFF; } break; case FC_READ_INPUT_REGISTERS: count = (query[offset+4] << 8) + query[offset+5]; byte_count = 2 * count; offset = build_response_packet(mb_param, slave, function, byte_count, response); for (i = address; i < address + count; i++) { response[offset++] = mb_mapping->tab_input_registers[i] >> 8; response[offset++] = mb_mapping->tab_input_registers[i] & 0xFF; } break; case FC_FORCE_SINGLE_COIL: data = (query[offset+4] << 8) + query[offset+5]; if (data == 0xFF00) mb_mapping->tab_coil_status[address] = ON; else if (data == 0x0) mb_mapping->tab_coil_status[address] = OFF; else printf("FIXME Error %d\n", data); printf("FIXME works only in TCP mode (CRC)"); memcpy(response, query, query_size); offset = query_size; break; case FC_PRESET_SINGLE_REGISTER: case FC_READ_EXCEPTION_STATUS: case FC_FORCE_MULTIPLE_COILS: case FC_PRESET_MULTIPLE_REGISTERS: case FC_REPORT_SLAVE_ID: printf("Not implemented\n"); break; } modbus_send(mb_param, response, offset); } /* Listens any message on a socket or file descriptor. Returns: - 0 if OK, or a negative error number if the request fails - query, message received - query_size, size in bytes of the message */ int modbus_listen(modbus_param_t *mb_param, uint8_t *query, int *query_size) { int ret; ret = receive_msg(mb_param, MSG_SIZE_UNDEFINED, query, query_size); if (ret == 0) { ret = check_crc16(mb_param, query, *query_size); } return ret; } /* Reads IO status */ static int read_io_status(modbus_param_t *mb_param, int slave, int function, int start_addr, int count, uint8_t *data_dest) { int query_size; int query_ret; int response_ret; uint8_t query[MIN_QUERY_SIZE]; uint8_t response[MAX_PACKET_SIZE]; query_size = build_query_packet(mb_param, slave, function, start_addr, count, query); query_ret = modbus_send(mb_param, query, query_size); if (query_ret > 0) { int i, temp, bit; int pos = 0; int processed = 0; int offset; int offset_length; response_ret = modbus_check_response(mb_param, query, response); offset = mb_param->header_length; offset_length = offset + response_ret; for (i = offset; i < offset_length; i++) { /* Shift reg hi_byte to temp */ temp = response[3 + i]; for (bit = 0x01; (bit & 0xff) && (processed < count);) { data_dest[pos++] = (temp & bit) ? TRUE : FALSE; processed++; bit = bit << 1; } } } else { response_ret = query_ret; } return response_ret; } /* Reads the boolean status of coils and sets the array elements in the destination to TRUE or FALSE. */ int read_coil_status(modbus_param_t *mb_param, int slave, int start_addr, const int count, uint8_t *data_dest) { int status; status = read_io_status(mb_param, slave, FC_READ_COIL_STATUS, start_addr, count, data_dest); if (status > 0) status = count; return status; } /* Same as read_coil_status but reads the slaves input table */ int read_input_status(modbus_param_t *mb_param, int slave, int start_addr, const int count, uint8_t *data_dest) { int status; status = read_io_status(mb_param, slave, FC_READ_INPUT_STATUS, start_addr, count, data_dest); if (status > 0) status = count; return status; } /* Reads the data from a modbus slave and put that data into an array */ static int read_registers(modbus_param_t *mb_param, int slave, int function, int start_addr, int count, uint16_t *data_dest) { int query_size; int status; int query_ret; uint8_t query[MIN_QUERY_SIZE]; query_size = build_query_packet(mb_param, slave, function, start_addr, count, query); query_ret = modbus_send(mb_param, query, query_size); if (query_ret > 0) status = read_reg_response(mb_param, data_dest, query); else status = query_ret; return status; } /* Reads the holding registers in a slave and put the data into an array */ int read_holding_registers(modbus_param_t *mb_param, int slave, int start_addr, int count, uint16_t *data_dest) { int status; if (count > MAX_READ_HOLD_REGS) { printf("WARNING Too many holding registers requested\n"); count = MAX_READ_HOLD_REGS; } status = read_registers(mb_param, slave, FC_READ_HOLDING_REGISTERS, start_addr, count, data_dest); return status; } /* Reads the input registers in a slave and put the data into an array */ int read_input_registers(modbus_param_t *mb_param, int slave, int start_addr, int count, uint16_t *data_dest) { int status; if (count > MAX_READ_INPUT_REGS) { printf("WARNING Too many input registers requested\n"); count = MAX_READ_INPUT_REGS; } status = read_registers(mb_param, slave, FC_READ_INPUT_REGISTERS, start_addr, count, data_dest); return status; } /* Reads the response data from a slave and puts the data into an array */ static int read_reg_response(modbus_param_t *mb_param, uint16_t *data_dest, uint8_t *query) { uint8_t response[MAX_PACKET_SIZE]; int response_ret; int offset; int i; response_ret = modbus_check_response(mb_param, query, response); offset = mb_param->header_length; /* If response_ret is negative, the loop is jumped ! */ for (i = 0; i < response_ret; i++) { /* shift reg hi_byte to temp OR with lo_byte */ data_dest[i] = response[offset + 3 + (i << 1)] << 8 | response[offset + 4 + (i << 1)]; } return response_ret; } /* Gets the raw data from the input stream */ static int preset_response(modbus_param_t *mb_param, uint8_t *query) { int ret; uint8_t response[MAX_PACKET_SIZE]; ret = modbus_check_response(mb_param, query, response); return ret; } /* Sends a value to a register in a slave */ static int set_single(modbus_param_t *mb_param, int slave, int function, int addr, int value) { int status; int query_size; int query_ret; uint8_t query[MAX_PACKET_SIZE]; query_size = build_query_packet(mb_param, slave, function, addr, value, query); query_ret = modbus_send(mb_param, query, query_size); if (query_ret > 0) status = preset_response(mb_param, query); else status = query_ret; return status; } /* Turns on or off a single coil on the slave device */ int force_single_coil(modbus_param_t *mb_param, int slave, int coil_addr, int state) { int status; if (state) state = 0xFF00; status = set_single(mb_param, slave, FC_FORCE_SINGLE_COIL, coil_addr, state); return status; } /* Sets a value in one holding register in the slave device */ int preset_single_register(modbus_param_t *mb_param, int slave, int reg_addr, int value) { int status; status = set_single(mb_param, slave, FC_PRESET_SINGLE_REGISTER, reg_addr, value); return status; } /* Takes an array of ints and sets or resets the coils on a slave appropriatly */ int force_multiple_coils(modbus_param_t *mb_param, int slave, int start_addr, int coil_count, uint8_t *data_src) { int i; int byte_count; int query_size; int coil_check = 0; int status; int query_ret; int pos = 0; uint8_t query[MAX_PACKET_SIZE]; if (coil_count > MAX_WRITE_COILS) { printf("WARNING Writing to too many coils\n"); coil_count = MAX_WRITE_COILS; } query_size = build_query_packet(mb_param, slave, FC_FORCE_MULTIPLE_COILS, start_addr, coil_count, query); byte_count = (coil_count / 8) + ((coil_count % 8) ? 1 : 0); query[query_size++] = byte_count; for (i = 0; i < byte_count; i++) { int bit; bit = 0x01; query[query_size] = 0; while ((bit & 0xFF) && (coil_check++ < coil_count)) { if (data_src[pos++]) query[query_size] |= bit; else query[query_size] &=~ bit; bit = bit << 1; } query_size++; } query_ret = modbus_send(mb_param, query, query_size); if (query_ret > 0) status = preset_response(mb_param, query); else status = query_ret; return status; } /* Copies the values in an array to an array on the slave */ int preset_multiple_registers(modbus_param_t *mb_param, int slave, int start_addr, int reg_count, uint16_t *data_src) { int i; int query_size; int byte_count; int status; int query_ret; uint8_t query[MAX_PACKET_SIZE]; if (reg_count > MAX_WRITE_REGS) { printf("WARNING Trying to write to too many registers\n"); reg_count = MAX_WRITE_REGS; } query_size = build_query_packet(mb_param, slave, FC_PRESET_MULTIPLE_REGISTERS, start_addr, reg_count, query); byte_count = reg_count * 2; query[query_size++] = byte_count; for (i = 0; i < reg_count; i++) { query[query_size++] = data_src[i] >> 8; query[query_size++] = data_src[i] & 0x00FF; } query_ret = modbus_send(mb_param, query, query_size); if (query_ret > 0) status = preset_response(mb_param, query); else status = query_ret; return status; } /* Returns the slave id ! */ int report_slave_id(modbus_param_t *mb_param, int slave, uint8_t *data_dest) { int query_size; int query_ret; int response_ret; uint8_t query[MIN_QUERY_SIZE]; uint8_t response[MAX_PACKET_SIZE]; query_size = build_query_packet(mb_param, slave, FC_REPORT_SLAVE_ID, 0, 0, query); /* start_addr and count are not used */ query_size -= 4; query_ret = modbus_send(mb_param, query, query_size); if (query_ret > 0) { int i; int offset; int offset_length; /* Byte count, slave id, run indicator status, additional data */ response_ret = modbus_check_response(mb_param, query, response); offset = mb_param->header_length; offset_length = offset + response_ret; for (i = offset; i < offset_length; i++) data_dest[i] = response[i]; } else { response_ret = query_ret; } return response_ret; } /* Initialises the modbus_param_t structure for RTU */ void modbus_init_rtu(modbus_param_t *mb_param, char *device, int baud_i, char *parity, int data_bit, int stop_bit) { memset(mb_param, 0, sizeof(modbus_param_t)); strcpy(mb_param->device, device); mb_param->baud_i = baud_i; strcpy(mb_param->parity, parity); mb_param->debug = FALSE; mb_param->data_bit = data_bit; mb_param->stop_bit = stop_bit; mb_param->type_com = RTU; mb_param->header_length = HEADER_LENGTH_RTU; mb_param->checksum_size = CHECKSUM_SIZE_RTU; } /* Initialises the modbus_param_t structure for TCP. Set the port to MODBUS_TCP_DEFAULT_PORT to use the default one (502). It's convenient to use a port number greater than or equal to 1024 because it's not necessary to be root to use this port number. */ void modbus_init_tcp(modbus_param_t *mb_param, char *ip, uint16_t port) { memset(mb_param, 0, sizeof(modbus_param_t)); strncpy(mb_param->ip, ip, sizeof(char)*16); mb_param->port = port; mb_param->type_com = TCP; mb_param->header_length = HEADER_LENGTH_TCP; mb_param->checksum_size = CHECKSUM_SIZE_TCP; mb_param->error_handling = RECONNECT_ON_ERROR; } /* By default, the error handling mode used is RECONNECT_ON_ERROR. With RECONNECT_ON_ERROR, the library will attempt an immediate reconnection which may hang for several seconds if the network to the remote target unit is down. With NOP_ON_ERROR, it is expected that the application will check for network error returns and deal with them as necessary. This function is only useful in TCP mode. */ void modbus_set_error_handling(modbus_param_t *mb_param, error_handling_t error_handling) { if (error_handling == RECONNECT_ON_ERROR || error_handling == NOP_ON_ERROR) { mb_param->error_handling = error_handling; } else { printf("Invalid setting for error handling (not changed)\n"); } } /* This function sets up a serial port for RTU communications to modbus */ static int modbus_connect_rtu(modbus_param_t *mb_param) { struct termios tios; speed_t baud_rate; if (mb_param->debug) { printf("Opening %s at %d bauds (%s)\n", mb_param->device, mb_param->baud_i, mb_param->parity); } /* The O_NOCTTY flag tells UNIX that this program doesn't want to be the "controlling terminal" for that port. If you don't specify this then any input (such as keyboard abort signals and so forth) will affect your process Timeouts are ignored in canonical input mode or when the NDELAY option is set on the file via open or fcntl */ mb_param->fd = open(mb_param->device, O_RDWR | O_NOCTTY | O_NDELAY); if (mb_param->fd < 0) { perror("open"); printf("ERROR Opening device %s (no : %d)\n", mb_param->device, errno); return -1; } /* Save */ tcgetattr(mb_param->fd, &(mb_param->old_tios)); memset(&tios, 0, sizeof(struct termios)); /* C_ISPEED Input baud (new interface) C_OSPEED Output baud (new interface) */ switch (mb_param->baud_i) { case 110: baud_rate = B110; break; case 300: baud_rate = B300; break; case 600: baud_rate = B600; break; case 1200: baud_rate = B1200; break; case 2400: baud_rate = B2400; break; case 4800: baud_rate = B4800; break; case 9600: baud_rate = B9600; break; case 19200: baud_rate = B19200; break; case 38400: baud_rate = B38400; break; case 57600: baud_rate = B57600; break; case 115200: baud_rate = B115200; break; default: baud_rate = B9600; printf("WARNING Unknown baud rate %d for %s (B9600 used)\n", mb_param->baud_i, mb_param->device); } /* Set the baud rate */ if ((cfsetispeed(&tios, baud_rate) < 0) || (cfsetospeed(&tios, baud_rate) < 0)) { perror("cfsetispeed/cfsetospeed\n"); return -1; } /* C_CFLAG Control options CLOCAL Local line - do not change "owner" of port CREAD Enable receiver */ tios.c_cflag |= (CREAD | CLOCAL); /* CSIZE, HUPCL, CRTSCTS (hardware flow control) */ /* Set data bits (5, 6, 7, 8 bits) CSIZE Bit mask for data bits */ tios.c_cflag &= ~CSIZE; switch (mb_param->data_bit) { case 5: tios.c_cflag |= CS5; break; case 6: tios.c_cflag |= CS6; break; case 7: tios.c_cflag |= CS7; break; case 8: default: tios.c_cflag |= CS8; break; } /* Stop bit (1 or 2) */ if (mb_param->stop_bit == 1) tios.c_cflag &=~ CSTOPB; else /* 2 */ tios.c_cflag |= CSTOPB; /* PARENB Enable parity bit PARODD Use odd parity instead of even */ if (strncmp(mb_param->parity, "none", 4) == 0) { tios.c_cflag &=~ PARENB; } else if (strncmp(mb_param->parity, "even", 4) == 0) { tios.c_cflag |= PARENB; tios.c_cflag &=~ PARODD; } else { /* odd */ tios.c_cflag |= PARENB; tios.c_cflag |= PARODD; } /* Read the man page of termios if you need more information. */ /* This field isn't used on POSIX systems tios.c_line = 0; */ /* C_LFLAG Line options ISIG Enable SIGINTR, SIGSUSP, SIGDSUSP, and SIGQUIT signals ICANON Enable canonical input (else raw) XCASE Map uppercase \lowercase (obsolete) ECHO Enable echoing of input characters ECHOE Echo erase character as BS-SP-BS ECHOK Echo NL after kill character ECHONL Echo NL NOFLSH Disable flushing of input buffers after interrupt or quit characters IEXTEN Enable extended functions ECHOCTL Echo control characters as ^char and delete as ~? ECHOPRT Echo erased character as character erased ECHOKE BS-SP-BS entire line on line kill FLUSHO Output being flushed PENDIN Retype pending input at next read or input char TOSTOP Send SIGTTOU for background output Canonical input is line-oriented. Input characters are put into a buffer which can be edited interactively by the user until a CR (carriage return) or LF (line feed) character is received. Raw input is unprocessed. Input characters are passed through exactly as they are received, when they are received. Generally you'll deselect the ICANON, ECHO, ECHOE, and ISIG options when using raw input */ /* Raw input */ tios.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); /* C_IFLAG Input options Constant Description INPCK Enable parity check IGNPAR Ignore parity errors PARMRK Mark parity errors ISTRIP Strip parity bits IXON Enable software flow control (outgoing) IXOFF Enable software flow control (incoming) IXANY Allow any character to start flow again IGNBRK Ignore break condition BRKINT Send a SIGINT when a break condition is detected INLCR Map NL to CR IGNCR Ignore CR ICRNL Map CR to NL IUCLC Map uppercase to lowercase IMAXBEL Echo BEL on input line too long */ if (strncmp(mb_param->parity, "none", 4) == 0) { tios.c_iflag &= ~INPCK; } else { tios.c_iflag |= INPCK; } /* Software flow control is disabled */ tios.c_iflag &= ~(IXON | IXOFF | IXANY); /* C_OFLAG Output options OPOST Postprocess output (not set = raw output) ONLCR Map NL to CR-NL ONCLR ant others needs OPOST to be enabled */ /* Raw ouput */ tios.c_oflag &=~ OPOST; /* C_CC Control characters VMIN Minimum number of characters to read VTIME Time to wait for data (tenths of seconds) UNIX serial interface drivers provide the ability to specify character and packet timeouts. Two elements of the c_cc array are used for timeouts: VMIN and VTIME. Timeouts are ignored in canonical input mode or when the NDELAY option is set on the file via open or fcntl. VMIN specifies the minimum number of characters to read. If it is set to 0, then the VTIME value specifies the time to wait for every character read. Note that this does not mean that a read call for N bytes will wait for N characters to come in. Rather, the timeout will apply to the first character and the read call will return the number of characters immediately available (up to the number you request). If VMIN is non-zero, VTIME specifies the time to wait for the first character read. If a character is read within the time given, any read will block (wait) until all VMIN characters are read. That is, once the first character is read, the serial interface driver expects to receive an entire packet of characters (VMIN bytes total). If no character is read within the time allowed, then the call to read returns 0. This method allows you to tell the serial driver you need exactly N bytes and any read call will return 0 or N bytes. However, the timeout only applies to the first character read, so if for some reason the driver misses one character inside the N byte packet then the read call could block forever waiting for additional input characters. VTIME specifies the amount of time to wait for incoming characters in tenths of seconds. If VTIME is set to 0 (the default), reads will block (wait) indefinitely unless the NDELAY option is set on the port with open or fcntl. */ /* Unused because we use open with the NDELAY option */ tios.c_cc[VMIN] = 0; tios.c_cc[VTIME] = 0; if (tcsetattr(mb_param->fd, TCSANOW, &tios) < 0) { perror("tcsetattr\n"); return -1; } return 0; } /* Establishes a modbus connection with a modbus slave */ static int modbus_connect_tcp(modbus_param_t *mb_param) { int ret; int option; struct sockaddr_in addr; addr.sin_family = AF_INET; addr.sin_port = htons(mb_param->port); addr.sin_addr.s_addr = inet_addr(mb_param->ip); mb_param->fd = socket(AF_INET, SOCK_STREAM, 0); if (mb_param->fd < 0) { return mb_param->fd; } /* Set the TCP no delay flag */ /* SOL_TCP = IPPROTO_TCP */ option = 1; ret = setsockopt(mb_param->fd, IPPROTO_TCP, TCP_NODELAY, (const void *)&option, sizeof(int)); if (ret < 0) { perror("setsockopt"); close(mb_param->fd); return ret; } /* Set the IP low delay option */ option = IPTOS_LOWDELAY; ret = setsockopt(mb_param->fd, IPPROTO_TCP, IP_TOS, (const void *)&option, sizeof(int)); if (ret < 0) { perror("setsockopt"); close(mb_param->fd); return ret; } if (mb_param->debug) { printf("Connecting to %s\n", mb_param->ip); } ret = connect(mb_param->fd, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)); if (ret < 0) { perror("connect"); close(mb_param->fd); return ret; } return 0; } /* Establishes a modbus connexion */ int modbus_connect(modbus_param_t *mb_param) { int ret; if (mb_param->type_com == RTU) ret = modbus_connect_rtu(mb_param); else ret = modbus_connect_tcp(mb_param); return ret; } /* Allocates 4 arrays to store coils, input status, input registers and holding registers. The pointers are stored in modbus_mapping structure. Returns: TRUE if ok, FALSE on failure */ int modbus_mapping_new(modbus_mapping_t *mb_mapping, int nb_coil_status, int nb_input_status, int nb_holding_registers, int nb_input_registers) { /* 0X */ mb_mapping->nb_coil_status = nb_coil_status; mb_mapping->tab_coil_status = (uint8_t *) malloc(nb_coil_status * sizeof(uint8_t)); memset(mb_mapping->tab_coil_status, 0, nb_coil_status * sizeof(uint8_t)); if (mb_mapping->tab_coil_status == NULL) return FALSE; /* 1X */ mb_mapping->nb_input_status = nb_input_status; mb_mapping->tab_input_status = (uint8_t *) malloc(nb_input_status * sizeof(uint8_t)); memset(mb_mapping->tab_input_status, 0, nb_input_status * sizeof(uint8_t)); if (mb_mapping->tab_input_status == NULL) { free(mb_mapping->tab_coil_status); return FALSE; } /* 4X */ mb_mapping->nb_holding_registers = nb_holding_registers; mb_mapping->tab_holding_registers = (uint16_t *) malloc(nb_holding_registers * sizeof(uint16_t)); memset(mb_mapping->tab_holding_registers, 0, nb_holding_registers * sizeof(uint16_t)); if (mb_mapping->tab_holding_registers == NULL) { free(mb_mapping->tab_coil_status); free(mb_mapping->tab_input_status); return FALSE; } /* 3X */ mb_mapping->nb_input_registers = nb_input_registers; mb_mapping->tab_input_registers = (uint16_t *) malloc(nb_input_registers * sizeof(uint16_t)); memset(mb_mapping->tab_input_registers, 0, nb_input_registers * sizeof(uint16_t)); if (mb_mapping->tab_input_registers == NULL) { free(mb_mapping->tab_coil_status); free(mb_mapping->tab_input_status); free(mb_mapping->tab_holding_registers); return FALSE; } return TRUE; } /* Frees the 4 arrays */ void modbus_mapping_free(modbus_mapping_t *mb_mapping) { free(mb_mapping->tab_coil_status); free(mb_mapping->tab_input_status); free(mb_mapping->tab_holding_registers); free(mb_mapping->tab_input_registers); } /* Listens for any query from a modbus master in TCP */ int modbus_init_listen_tcp(modbus_param_t *mb_param) { int ret; int new_socket; struct sockaddr_in addr; socklen_t addrlen; addr.sin_family = AF_INET; /* If the modbus port is < to 1024, we need the setuid root. */ addr.sin_port = htons(mb_param->port); addr.sin_addr.s_addr = INADDR_ANY; memset(&(addr.sin_zero), '\0', 8); new_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (new_socket < 0) { perror("socket"); exit(1); } else { printf("Socket OK\n"); } ret = bind(new_socket, (struct sockaddr *)&addr, sizeof(struct sockaddr_in)); if (ret < 0) { perror("bind"); close(new_socket); exit(1); } else { printf("Bind OK\n"); } ret = listen(new_socket, 1); if (ret != 0) { perror("listen"); close(new_socket); exit(1); } else { printf("Listen OK\n"); } addrlen = sizeof(struct sockaddr_in); mb_param->fd = accept(new_socket, (struct sockaddr *)&addr, &addrlen); if (ret < 0) { perror("accept"); close(new_socket); new_socket = 0; exit(1); } else { printf("The client %s is connected\n", inet_ntoa(addr.sin_addr)); } return new_socket; } /* Closes the file descriptor in RTU mode */ static void modbus_close_rtu(modbus_param_t *mb_param) { if (tcsetattr(mb_param->fd, TCSANOW, &(mb_param->old_tios)) < 0) perror("tcsetattr"); close(mb_param->fd); } /* Closes the network connection and socket in TCP mode */ static void modbus_close_tcp(modbus_param_t *mb_param) { shutdown(mb_param->fd, SHUT_RDWR); close(mb_param->fd); } /* Closes a modbus connection */ void modbus_close(modbus_param_t *mb_param) { if (mb_param->type_com == RTU) modbus_close_rtu(mb_param); else modbus_close_tcp(mb_param); } /* Activates the debug messages */ void modbus_set_debug(modbus_param_t *mb_param, int boolean) { mb_param->debug = boolean; } /** Utils **/ /* Set many inputs/coils form a single byte value (all 8 bits of the byte value are setted) */ void set_bits_from_byte(uint8_t *dest, uint16_t address, const uint8_t value) { int i; for (i=0; i<8; i++) { dest[address+i] = (value & (1 << i)) ? ON : OFF; } } /* Set many inputs/coils from a table of bytes (only the bits between address and address + nb_bits are setted) */ void set_bits_from_bytes(uint8_t *dest, uint16_t address, uint16_t nb_bits, const uint8_t tab_byte[]) { int i; int shift = 0; for (i=address; i < address + nb_bits; i++) { dest[i] = tab_byte[(i - address) / 8] & (1 << shift) ? ON : OFF; /* gcc doesn't like: shift = (++shift) % 8; */ shift++; shift %= 8; } } /* Get the byte value from many inputs/coils. To obtain a full byte, set nb_bits to 8. */ uint8_t get_byte_from_bits(const uint8_t *src, uint16_t address, int nb_bits) { int i; uint8_t value = 0; if (nb_bits > 8) { printf("Error: nb_bits is too big\n"); nb_bits = 8; } for (i=0; i